

Series PMC-VLX85/VLX110/VSX95/VLX155 Virtex-5 Based FPGA PMC Module

USER'S MANUAL

ACROMAG INCORPORATED 30765 South Wixom Road P.O. BOX 437 Wixom, MI 48393-7037 U.S.A. solutions@acromag.com

Copyright 2010, Acromag, Inc., Printed in the USA.

Data and specifications are subject to change without notice.

8500-810-C10H014

Tel: (248) 295-0310

Fax: (248) 624-9234

TABLE OF CONTENTS

IMPORTANT SAFETY CONSIDERATIONS

You must consider the possible negative effects of power, wiring, component, sensor, or software failure in the design of any type of control or monitoring system. This is very important where property loss or human life is involved. It is important that you perform satisfactory overall system design and it is agreed between you and Acromag, that this is your responsibility.

KEY FEATURES.....

1.0 General Information

The information of this manual may change without notice. Acromag makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Further, Acromag assumes no responsibility for any errors that may appear in this manual and makes no commitment to update, or keep current, the information contained in this manual. No part of this manual may be copied or reproduced in any form without the prior written consent of Acromag, Inc.

PCI INTERFACE FEATURES	5
ENGINEERING DESIGN KIT	6
BOARD DLL CONTROL SOFTWARE	6
BOARD VXWORKS SOFTWARE	6
BOARD QNX SOFTWARE	6
BOARD LINUX SOFTWARE	6
2.0 PREPARATION FOR USE	
UNPACKING AND INSPECTION	7
CARD CAGE CONSIDERATIONS	7
BOARD CONFIGURATION	7
Default Hardware Configuration	7
Front Panel I/O	7
Rear P4 Field I/O Connector	8
Non-Isolation Considerations	9
Standalone Operation	9
3.0 PROGRAMMING INFORMATION	
GETTING STARTED	9
PCI CONFIGURATION ADDRESS SPACE	10
PCIBARO MEMORY MAP	12
Interrupt Control/Status Register	13
DMA BARO REGISTERS	14
PCIBAR2 MEMORY MAP	17
Flash Configuration	19
Direct PCI bus to Xilinx Configuration	20
CONFIGURATION CONTROL REGISTERS	20
FLASH CONTROL REGISTERS	21
SYSTEM MONITOR REGISTERS U5 PCI bus	24
PCI BAR2 U7 FPGA REGISTERS	25
Software Reset and Status Register	25
Rear Connector Read Register	27
Rear Connector Write Register	27
DMA Control Register	28
DUAL PORT SRAM REGISTERS	28
ID Code REGISTER	31
DDR SDRAM REGISTERS	32

DDR SDRAM Control Register.....

DDR SDRAM Address Register.....

DDR SDRAM Read Registers.....

DDR SDRAM Write Registers.....

32

33

34

34

DDR SDRAM Mask Register	35	
SYSTEM MONITOR REGISTERS U7 FPGA	24	
PCI BAR1 MEMORY	38	
Static RAM Memory	38	
Dual Port Memory	38	
4.0 THEORY OF OPERATION		
PCI INTERFACE LOGIC	38	
SYNCHRONOUS DUAL-PORT SRAM	39	
CLOCK CONTROL	39	
DDR2 SDRAM	39	
LOCAL BUS SIGNALS	40	
5.0 SERVICE AND REPAIR		
SERVICE AND REPAIR ASSISTANCE	42	
PRELIMINARY SERVICE PROCEDURE	42	
WHERE TO GET HELP	42	
6.0 SPECIFICATIONS		
PHYSICAL	43	
ENVIRONMENTAL	43	
FPGA SPECIFICATIONS	44	
PCI LOCAL BUS INTERFACE	45	
CERTIFICATE OF VOLATILITY	47	
DRAWINGS		

The following manuals and part specifications provide the necessary information for in depth understanding of the AX board.

4502-082 BLOCK DIAGRAM.....

4502-083 J7 EXTERNAL POWER LOCATION

Virtex-5 Data Book IDT70T3519S Spec. IDT70T3509MS Spec. MT47H32M16CC Spec CY23EP05 Specification http://www.xilinx.com http://www.idt.com http://www.idt.com http://www.micron.com http://www.cypress.com

48

49

Trademarks are the property of their respective owners.

RELATED PUBLICATIONS

1.0 GENERAL INFORMATION

The re-configurable PMC-VL modules use the Xilinx Virtex-5 LX FPGA. The re-configurable PMC-VS modules use the Xilinx Virtex-5 SX FPGA. Re-configuration of the FPGA is possible via a direct download into the Xilinx FPGA over the PCI bus. In addition, on board flash memory can be loaded with FPGA configuration data for automatic Xilinx configuration on power-up. Flash programming is also implemented over the PCI bus.

The example design includes an interface to the user rear I/O and front I/O connectors and an example memory interface controller to the 32M x 32-bit DDR-SDRAM. The example design also, includes an interface to the SRAM with DMA hardware support.

Table 1.1: The PMC-VLX/VSX boards are available in both standard and extended temperature ranges

1. The standard model includes 256K x 64-bit dual port SRAM. The -1M model includes 1Meg x 64-bit dual port SRAM.

MODEL	FPGA	OPERATING TEMPERATURE RANGE
PMC-VLX85	XC5VLX85T	0°C to +70°C
PMC-VLX85E	XC5VLX85T	-40°C to +85°C
PMC-VLX110	XC5VLX110T	0°C to +70°C
PMC-VLX110E	XC5VLX110T	-40°C to +85°C
PMC-VLX155	XC5VLX155T	0°C to +70°C
PMC-VLX155-1M ¹	XC5VLX155T	0°C to +70°C
PMC-VLX155E	XC5VLX155T	-40°C to +85°C
PMC-VSX95	XC5VSX95T	0°C to +70°C or
PMC-VSX95E	XC5VSX95T	-40°C to +85°C

KEY FEATURES

- Reconfigurable Xilinx FPGA In system configuration of the FPGA is performed through a flash configuration device or via the PCI bus. This provides a means for creating custom user defined designs.
- 32M x 32 DDR-SDRAM A 32M x 32-bit double data rate (DDR2) dynamic random-access memory (DRAM) is directly accessed through the Xilinx user-programmable FPGA. Read and write accesses to the DDR2-SDRAM are burst oriented.
- 256K x 64 Dual-Port SRAM A 256K x 64-bit (1Meg x 64-bit for -1M model) dual-port static random access memory (SRAM) is included.
 One port of the SRAM provides a direct link from the PCI bus to the SRAM memory. The second port of the SRAM provides a direct link to the Xilinx user programmable FPGA.
- Interface to Front Multifunction Modules Various mezzanine modules ("AXM" model prefex), ordered separately, allow the user to select the Front I/O required for their application.
- Interface to Rear P4 Connector The Virtex 5 FPGA is directly connected to 64 pins of the rear P4 connector. All 2.5volt IO standards supported by the Virtex 5 device are available. The example design provides low voltage differential signaling as 32 LVDS input/output signals.

5

 Write Disable Jumper – User configurable flash memory can be hardware write disabled by removal of an on board zero ohm surface mount resistor.

PCI INTERFACE FEATURES

- Example Design Provided The example VHDL design includes implementation of the Local bus interface, control of digital front and rear I/O, SRAM read/write interface logic, and DDR2-SDRAM memory interface controller.
- PCI Bus Modes The board supports PCI-X at 100MHz, 66MHz and 33MHz.
- PCI Bus Master The PCI interface logic becomes the bus master to perform DMA transfers.
- DMA Operation The PCI bus interface supports two independent DMA channels capable of transferring data to and from the on board SRAM. The example design implements DMA block and demand modes of operation.
- 64, 32, 16, 8-bit I/O Register Read/Write is performed through data transfer cycles in the PCI memory space. All registers can be accessed via 32, 16, or 8-bit data transfers. Access to Dual Port Memory can be accessed via 64, or 32-bit transfers.
- Compatibility Complies with PCI Local Bus Specification Revision 3.0. Provides one multifunction interrupt. Board is 3.3V signaling compliant. The voltage provided on the PCI connector VIO pins determines the operating voltage of the PCI bus.
- Supply Voltage Requirement The board requires that 3.3 volts external power be provided on the 3.3 volt signal lines of the PCI bus connector.

ENGINEERING DESIGN KIT

Acromag provides an engineering design kit for the VLX/VSX boards (sold separately), a "must buy" for first time VLX/VSX module purchasers. The design kit (model PMC-VLX/VSX-EDK) provides the user with the basic information required to develop a custom FPGA program for download to the Xilinx user-programmable FPGA. The design kit includes a CD containing: schematics, parts list, part location drawing, example VHDL source, and other utility files. The VLX/VSX modules are intended for users fluent in the use of Xilinx FPGA design tools.

BOARD DLL CONTROL SOFTWARE

Acromag provides a software product (sold separately) to facilitate the development of Windows (2000/XP/Vista/7®) applications accessing Acromag PMC and XMC I/O board products, PCI and PCIe I/O Cards, and CompactPCI I/O Cards. This software (Model PCISW-API-WIN) consists of low-level drivers and Windows 32 Dynamic Link Libraries (DLLs) that are compatible with a number of programming environments including Visual C++ $^{\text{TM}}$, Visual Basic®, Borland C++ Builder® and others. The DLL functions provide a high-level interface to boards eliminating the need to perform low-level reads/writes of registers, and the writing of interrupt handlers.

BOARD VxWORKS SOFTWARE

Acromag provides a software product (sold separately) consisting of board VxWorks® software. This software (Model PMCSW-API-VXW) is composed of VxWorks® (real time operating system) libraries for all Acromag PMC and XMC I/O board products, PCI and PCie I/O Cards, and CompactPCI I/O Cards. The software is implemented as a library of "C" functions which link with existing user code to make possible simple control of all Acromag PCI and PCIe boards.

BOARD QNX SOFTWARE

Acromag provides a software product (sold separately) consisting of board QNX® software. This software (Model PMCSW-API-QNX) is composed of QNX® (real time operating system) libraries for all Acromag PMC and XMC I/O board products, PCI and PCIe I/O cards, and CompactPCI I/O cards. The software supports X86 PCI bus only and is implemented as library of "C" functions which link with existing user code to make possible simple control of all Acromag PCI and PCIe boards.

BOARD Linux SOFTWARE

Acromag provides a software product consisting of board Linux® software. This software (Model PMCSW-API-LNX) is composed of Linux® libraries for all Acromag PMC and XMC I/O board products, PCI and PCIe I/O cards, and CompactPCI I/O cards. The software supports X86 PCI bus only and is implemented as library of "C" functions which link with existing user code to make possible simple control of all Acromag PCI and PCIe boards.

7

Upon receipt of this product, inspect the shipping carton for evidence of mishandling during transit. If the shipping carton is badly damaged or water stained, request that the carrier's agent be present when the carton is opened. If the carrier's agent is absent when the carton is opened and the contents of the carton are damaged, keep the carton and packing material for the agent's inspection.

For repairs to a product damaged in shipment, refer to the Acromag Service Policy to obtain return instructions. It is suggested that salvageable shipping cartons and packing material be saved for future use in the event the product must be shipped.

This board is physically protected with packing material and electrically protected with an anti-static bag during shipment. However, it is recommended that the board be visually inspected for evidence of mishandling prior to applying power.

Refer to the specifications for loading and power requirements. Be sure that the system power supplies are able to accommodate the power requirements of the system boards, plus the installed Acromag board, within the voltage tolerances specified.

In an air cooled assembly, adequate air circulation must be provided to prevent a temperature rise above the maximum operating temperature and to prolong the life of the electronics. If the installation is in an industrial environment and the board is exposed to environmental air, careful consideration should be given to air-filtering.

In a conduction cooled assembly, adequate thermal conduction must be provided to prevent a temperature rise above the maximum operating temperature.

Remove power from the system before installing board, cables, termination panels, and field wiring.

The board may be configured differently, depending on the application. When the board is shipped from the factory, it is configured as follows:

- The on board flash memory device (U6) is read/write enabled.
- The default configuration of the programmable software control register bits at power-up are described in section 3.
- The control registers must be programmed to the desired configuration before starting data input or output operation.

The front panel connector provides the field I/O interface connections via optional mezzanine I/O modules, purchased separately.

The rear I/O P4 PMC connector connects directly to the user-programmable FPGA. The VCCO pins are powered by 2.5 volts and thus will support the 2.5 volt IOStandards. The IOSTANDARD attribute can be set in the user constraints file (UCF). For example, rear I/O can be defined for LVCMOS25 (low voltage CMOS). The example design defines the rear I/O to LVDS_25 (Low-Voltage Differential Signaling) in the user constraints file. The 2.5 volt IOStandards available are listed in table 6-39 of the Virtex 5 User Guide available from Xilinx.

2.0 PREPARATION FOR USE

UNPACKING AND INSPECTION

WARNING: This board utilizes static sensitive components and should only be handled at a static-safe workstation.

CARD CAGE CONSIDERATIONS

IMPORTANT: Adequate air circulation or conduction cooling must be provided to prevent a temperature rise above the maximum operating temperature.

BOARD CONFIGURATION

Default Hardware Configuration

Front Panel Field I/O Connector

Rear P4 Field I/O Connector

The example design defines the rear I/O connector with 32 LVDS I/O pairs. The LVDS pairs are arranged in the same row in table 2.1. For example, RIO0_P and RIO0_N form a signal pair. The P identifies the Positive input while the N identifies the Negative input.

Table 2.1: Board Rear Field I/O Pin Connections

The example design implements 2.5volt LVDS I/O to the rear connector. Signal pairs are routed to pins (1,2), (3,4) etc.

Ch.	Positive Pin Description	Pin	Negative Pin Description	Pin
0	RIO0_P	1	RIO0_N	2
1	RIO1_P	3	RIO1_N	4
2	RIO2_P	5	RIO2_N	6
3	RIO3_P	7	RIO3_N	8
4	RIO4_P	9	RIO4_N	10
5	RIO5_P	11	RIO5_N	12
6	RIO6_P	13	RIO6_N	14
7	RIO7_P	15	RIO7_N	16
8	RIO8_P	17	RIO8_N	18
9	RIO9_P	19	RIO9_N	20
10	RIO10_P	21	RIO10_N	22
11	RIO11_P	23	RIO11_N	24
12	RIO12_P	25	RIO12_N	26
13	RIO13_P	27	RIO13_N	28
14	RIO14_P	29	RIO14_N	30
15	RIO15_P	31	RIO15_N	32
16	RIO16_P	33	RIO16_N	34
17	RIO17_P	35	RIO17_N	36
18	RIO18_P	37	RIO18_N	38
19	RIO19_P	39	RIO19_N	40
20	RIO20_P	41	RIO20_N	42
21	RIO21_P	43	RIO21_N	44
22	RIO22_P	45	RIO22_N	46
23	RIO23_P	47	RIO23_N	48
24	RIO24_P	49	RIO24_N	50
25	RIO25_P	51	RIO25_N	52
26	RIO26_P	53	RIO26_N	54
27	RIO27_P	55	RIO27_N	56
28	RIO28_P	57	RIO28_N	58
29	RIO29_P	59	RIO29_N	60
30	RIO30_P	61	RIO30_N	62
31	RIO31_P	63	RIO31_N	64

This connector is a 64-pin female receptacle header (AMP 120527-1 or equivalent) which mates to the male connector on the carrier/CPU board (AMP 120521-1 or equivalent).

Non-Isolation Considerations

The board is non-isolated, since there is electrical continuity between the logic and field I/O grounds. As such, the field I/O connections are not isolated from the system. Care should be taken in designing installations without isolation to avoid noise pickup and ground loops caused by multiple ground connections.

Standalone Operation

Powering the PMC-VLX/VSX as an independent board is possible using the J7 board through holes. As an independent standalone board the PMC-

VLX/VSX board would not be plugged into a PMC slot. It must, in this case, receive power though the J7 contact holes and provide passive resistive pullups on all PCI bus signals required to be pulled up by the system card. Note, the board could be damaged if the required pull-up resistors are not used. To independently power the board, the required +5 volt and +3.3 volt power supplies must be provided via the J7 contact holes. The holes have 29 mil openings with 60 mil pads. The location of the J7 contact holes on the board are shown in diagram 4502-083 at the end of this manual.

By default the flash memory (U6) is read/write enabled. Removal of resistor R172 disables writing the flash configuration device. Refer to Resistor Location Drawing 4502-088 to identify the board location of R172.

Flash Write Disable Resistor

This Section provides the specific information necessary to program and operate the board.

3.0 PROGRAMMING INFORMATION

GETTING STARTED

 The PMC VLX/VSX board is shipped with the user-programmable Xilinx FPGA code stored in flash memory. Upon power-up the PMC VLX/VSX will automatically configure the FPGA with the example design code stored in flash. As a first step become familiar with the PMC VLX/VSX, as supplied by Acromag. The board will perform all the functions of the example design.

The Example Design Memory Map section gives a description of the I/O operations performed by the example design. It will allow testing of digital I/O, interrupts, read/write of dual port SRAM, read/write of double data rate SDRAM, and testing of both DMA channels. It is strongly recommended that you become familiar with the board features by using the example design as provided by Acromag.

Do not attempt to reconfigure the flash memory until after you have tested and become familiar with the PMC VLX/VSX as provided in the example design.

2. After you are familiar with the PMC VLX/VSX and have tested it using the example design, you can move on to step 2. Here you will modify the example design VHDL code slightly. It is recommended that you test this modified example design using the reconfiguration direct method. It is not recommended that the flash be overwritten until you have tested your code. The reconfigure direct method will allow programming of the FPGA directly from the PCI bus. If for some reason the PMC VLX/VSX does not perform as expected, you can power the PMC VLX/VSX down. Upon power-up, the example design provided by Acromag will again be loaded into the FPGA.

The document, Using the PMC VLX/VSX Engineering Design Kit, provided in the engineering design kit will guide you through the steps required to modify the example design for your custom application.

See the Direct PCI bus to Xilinx Configuration section for a description of the steps required to perform reconfiguration directly from the PCI bus. The registers provided in the FPGA Programming Memory Map are used to implement a direct reconfiguration.

3. After you have thoroughly tested your customized FPGA design, you can erase the flash and write your code to flash. Once the flash is erased you will not be able to go back to the example design by simply powering down and restarting the board.

See the Flash Configuration section for a description of the steps required to write new or reprogram of example design code to the flash device. The registers provided in the FPGA Programming Memory Map are used to implement a flash erase and reprogram operations.

PCI CONFIGURATION ADDRESS SPACE

This board is a PCI Specification version 3.0 compliant PCI bus master/target board.

The PCI bus is defined to address three distinct address spaces: I/O, memory, and configuration space. This board can be accessed via the PCI bus memory, and configuration spaces.

The card's configuration registers are initialized by system software at power-up to configure the card. The board is a Plug-and-Play PCI card. As a Plug-and-Play card the board's base address and system interrupt request line are not selected via jumpers but are assigned by system software upon power-up via the configuration registers. A PCI bus configuration access is used to read/write the PCI card's configuration registers.

When the computer is first powered-up, the computer's system configuration software scans the PCI bus to determine what PCI devices are present. The software also determines the configuration requirements of the PCI card.

The system software accesses the configuration registers to determine how many blocks of memory space the module requires. It then programs the board's configuration registers with the unique memory base address.

The configuration registers are also used to indicate that the board requires an interrupt request line. The system software then programs the configuration registers with the interrupt request line assigned to the board.

Since this board is relocatable and not fixed in address space, its device driver must use the mapping information stored in the board's Configuration Space registers to determine where the board is mapped in memory space and which interrupt line will be used.

The memory maps in this chapter reflect byte accesses using the "Little Endian" byte ordering format. Little Endian uses even-byte addresses to store the low-order byte. Little-Endian means that the least significant byte is stored at the lowest memory address and the most significant byte is stored at the highest memory address. The Intel x86 family of microprocessors uses "Little Endian" byte ordering.

Big Endian is the convention used in the Motorola 68000 microprocessor family and is the VMEbus convention. In Big Endian, the lower-order byte is stored at odd-byte addresses. Big-endian means that the most significant byte is stored at the lowest memory address and the least significant byte is stored at the highest memory address.

	Low address	Layout of a 64-bit long int					High address	
Little Endian	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
Big Endian	Byte 7	Byte 6	Byte 5	Byte 4	Byte 3	Byte 2	Byte 1	Byte 0

The PCI specification requires software driven initialization and configuration via the Configuration Address space. This board provides 512 bytes of configuration registers for this purpose. It contains the configuration registers, shown in Table 3.1, to facilitate Plug-and-Play compatibility.

CONFIGURATION REGISTERS

The Configuration Registers are accessed via the Configuration Address and Data Ports. The most important Configuration Registers are the Base Address Registers and the Interrupt Line Register which must be read to determine the base address assigned to the board and the interrupt request line that goes active on a board interrupt request.

D	D04	D04	D00	D40	D45		D.7	
Reg.	D31	D24	D23	D16	D15	D8	D7	D0
Num.								
0	Device ID				Vendo	or ID		
		0x5601					_	
		0x5602				160)5	
		0x5604						
		0x5606						
4		0x5603		5)				
1			itus			Comn		
2				ode=1180			_	ID=00
3	_	IST		ader		ency		ache
4	32-bit Memory Base Address for Memory Accesses to PCI							
	interrupt, and DMA Registers, 4K Space(PCIBAR0)))		
5	32-bit Memory Base Address/64-bit Data							
	to Dual Port Memory, 4M Space for standard model (PCIBAR1)					(IBAR1)		
		8	M Spa	ce for -1N	/I model (PCIBAR1	l)	
6		32-bit Mo	emory E	Base Add	ress/32-b	it Data to	Virtex	5
		U	ser Re	gisters, 4	M Space(PCIBAR	2)	
7:10				Not	Used			
11		Subsys	stem ID		Suk	system	Vendo	r ID
	0x5601 (VLX85)							
	0x5602 (VLX110)				16E)5		
		0x5604 (VLX155)						
		0x5606 (VLX155-1M)						
		0x5603	(VSX9	,				
12	Not Used							
13,14	Reserved							
15	Max	x_Lat	Mir	_Gnt	Inter	. Pin	Inte	r. Line

Table 3.1 Configuration Registers

This board is allocated memory space address (PCIBAR0) to access the PCI interrupt, and DMA registers. The PCI bus decodes 4K bytes for these memory space registers. PCIBAR0 space is accessed using 32-bit data transfers. This board is allocated (PCIBAR1) memory of 4M byte for a standard model and 8M byte for -1M model. The PCIBAR1 memory is addressable in the PCI bus memory space to access the board's Dual Port Memory using 32-bit or 64-bit transfers.

In addition, this board is allocated a 4M byte block of memory (PCIBAR2) that is addressable in the PCI bus memory space. PCIBAR2 space is used to access the board's flash configuration functions and the reprogrammable Virtex 5 FPGA functions via 32-bit data transfers.

PCIBARO MEMORY MAP

The PCIBAR0 registers are implemented in the PCI bus interface chip and not the user programmable FPGA. As such, the user cannot change the logic functions implemented in PCIBAR0. These registers are read/write registers that are software controlled. These registers provide interrupt control/status and DMA control/status. The Interrupt Control/Status is at PCIBAR0 base address plus 00H offset. The DMA registers are at PCIBAR0 base address plus offset 100H to 124H. These registers control the transfer direction, size, system address, and PMC addresses for DMA channels 0 and 1.

Table 3.2: PCIBAR0 Registers

Note that any registers/bits not mentioned will remain at the default value logic low.

PCIBAR0 Base Addr+	Bit(s)	Description
00H	31:0	Interrupt Control/Status
04H	31:0	DMA Status/Abort Register
08H	31:0	Global Interrupt Enable (Bit-31)
0CH -> FFH	31:0	Reserved
100H	31:0	DMA Channel 0 System Starting Address
104H	31:0	DMA Channel 0 PMC Board Starting Address
108H	31:0	DMA Channel 0 Transfer Size in bytes
10CH	7:0	DMA Channel 0 Command
110H	0	DMA Channel 0 Start DMA Transfer Bit
114H	31:0	DMA Channel 1 System Starting Address
118H	31:0	DMA Channel 1 PMC Board Starting Address
11CH	31:0	DMA Channel 1 Transfer Size in bytes
120H	7:0	DMA Channel 1 Command
124H	0	DMA Channel 1 Start DMA Transfer Bit
128H->FFFH	31:0	Reserved

The Dual Port SRAM control registers at PCIBAR2 must also be used to set up a DMA Demand Mode transfer. The Demand mode transfer is initiated by driving signals DREQ0# or DREQ1# active. The SRAM control register method allows a DMA transfer to be initiated when an FPGA generated address counter is equal to the DMA Channel Threshold Register. That is, when the predetermined amount of data is available in the SRAM the hardware will automatically start a DMA transfer.

Interrupt Control/Status Register (Read/Write) - (PCIBAR0 + 00H)

This Interrupt Control/Status register at PCIBAR0 base address + offset 00H is used to monitor and clear pending board interrupts. An interrupt can originate from the two DMA channels or U7, the user-programmable FPGA. All board interrupts are enabled or disabled via bit-31 of the Global Interrupt Enable register at PCIBAR0 + 08H.

FUNCTION Bit(s) 0 This bit when set indicates a pending board interrupt. It reflects a pending interrupt from DMA channel 0 or DMA channel 1 or the U7 FPGA. It will reflect this status even if the Board Interrupt enable bit-31 is disabled. 0 No Interrupt Pending 1 Interrupt Pending DMA Channel 0 Interrupt Pending Status. Bit-16 must be set to logic high for this bit to go active. Write logic high to clear bit. No Interrupt Pending 1 Interrupt Pending 2 DMA Channel 1 Interrupt Pending Status. Bit-17 must be set to logic high for this bit to go active. Write logic high to clear bit. No Interrupt Pending Interrupt Pending 3 U7 Programmable FGPA Interrupt Pending Status. Bit-18 must be set to logic high for this bit to go active. 0 No Interrupt Pending 1 Interrupt Pending 4-15 Not Used (bits are read as logic "0") 16 DMA Channel 0 Interrupt Enable DMA Channel 0 Interrupt Disabled DMA Channel 0 Interrupt Enabled 17 DMA Channel 1 Interrupt Enable DMA Channel 1 Interrupt Disabled DMA Channel 1 Interrupt Enabled 18 U7 Programmable FPGA Interrupt Enable 0 Interrupt Disabled 1 Interrupt Enabled 19-31 Not Used (bits are read as logic "0")

INTERRUPT REGISTER

Table 3.3: Interrupt Control/Status Register When designing software drivers it is best to treat this register as two 16-bit registers. The upper 16-bits are Interrupt Control bits and the lower 16bits are Interrupt Status.

A board pending interrupt is identified via bit-0 of this register. Logic high on bit-0 indicates a board pending interrupt. Bit-0 indicates a pending interrupt as long as DMA Channel 0 or DMA Channel 1 or U7

Programmable FPGA interrupt pending status bits 1, 2, or 3 respectively, remain active.

A DMA channel 0 pending status can be cleared/released by writing logic high to bit-1, the interrupt pending status bit. Likewise, writing logic high to bit-2 of this register clears DMA channel 1 pending status. U7 Programmable FPGA interrupt Pending status will pass the interrupt status of U7 only when bit-18 is set to logic high.

The Software Reset and Status Register at PCIBAR2 + 8000H can be read to identify the exact source of the Programmable Virtex-5 FPGA interrupt.

Bits 16 to 18 of this register are used to enable or disable interrupts from specific functions. This Interrupt register must have bits 16 and 17 set to a logic high in order for DMA interrupts to occur on DMA channels 0 and 1, respectively. Bit-18 must be set to logic high to enable interrupts from U7, the programmable FPGA.

The mezzanine board interrupt enable bits must also be set if interrupts are to originate from the mezzanine board which are passed through the programmable FPGA to this register's pending status bits.

DMA Status/Abort Register (Read/Write) - (PCIBAR0 + 04H)

Bit(s)	FUNCT	ION			
0		MA Channel 0 Transfer Complete. This bit is cleared by ite of logic high to this bit or start of a new DMA transfer.			
	0	Transfer n	not Complete		
	1	Transfer C	Completed		
1		logic high to	ansfer Complete. This bit is cleared by o this bit or start of a new DMA transfer.		
	0		not Complete		
	1	Transfer C	Completed		
2-7		•	read as logic "0")		
8	DMA CI		terrupt Abort on write of logic high to this bit.		
	0	No Action			
	1	Abort Cha	innel 0 DMA transfer		
9	DMA CI		terrupt Abort on write of logic high to this bit.		
	0	No Action			
	1	Abort Cha	nnel 1 DMA transfer		
10-15	Not Use	ed (bits are	read as logic "0")		
16-19	DMA CI	hannel 0 St	ate Encoding		
		000	Transfer Completed Successfully		
	0001	to 0111	Transfer Aborted		
	1000	0 to 1100 Transfer not yet completed			
20-23	DMA Channel 1 State Encoding				
	0	0000 Transfer Completed Successfully			
	0001	0001 to 0111 Transfer Aborted			
	1000	to 1100	Transfer not yet completed		
24-31	Not Use	ed (bits are	read as logic "0")		

DMA BARO REGISTERS

Table 3.4 DMA Status Register

15

This DMA Status register at PCIBAR0 base address plus 04H is used to identify a DMA transfer complete status and issue DMA channel abort.

The DMA complete status bit 0 or 1 will remain logic high until cleared by writing logic high back to the same bit. The start of a new DMA transfer (software or hardware initiated) will also clear a set Transfer Complete bit.

This register can be read or written via 32-bit, 16-bit or 8-bit data transfers.

Global Interrupt Enable Bit-31 (Read/Write) - (PCIBAR0 + 08H)

This Global Interrupt Enable bit at PCIBAR0 base address + offset 08H is used to enable all board interrupts. An interrupt can originate from the two DMA channels or U7, the programmable FPGA. All board interrupts are enabled when bit-31 is set to logic high. Likewise, board interrupts are disabled with bit-31 set to logic low. Bit-31 of this register can be read or written.

Bit(s)	FUNCT	ION		
0-30	Not Use	Not Used (bits are read as logic "0")		
31		MC Board Interrupt Enable. This bit must be set to enable e PCI bus interrupt signal to be driven active by the board.		
	0	Board Interrupts Disabled		
	1	Board Interrupts Enabled		

GLOBAL INTERRUPT

bit DMA transfers.

ENABLE

DMA BARO REGISTERS

DMA transfers must start

aligned to a Lword boundary

transfer and a Double Lword boundary when performing 64-

when implemented as a 32-bit

Table 3.5 Global Interrupt Enable Bit

DMA System Starting Address Registers (Read/Write) - (PCIBAR0 + 100H and 114H)

The DMA System Starting Address register meaning depends on the selected DMA mode (see bit-3 of DMA command register). For Direct DMA Mode this address register specifies the physical address of a contiguous memory buffer where data will be read/written. For scatter-gather DMA mode this address register points to the first element of the chained-listed of page descriptors.

The DMA System Starting Address Register at PCIBAR0 base address plus 100H (114H) is used to set the DMA channel 0 (1) data starting address. Writing to these registers is possible via 32-bit, 16-bit or 8-bit data transfers.

DMA PMC Board Starting Address Registers (Read/Write) - (PCIBAR0 + 104H and 118H)

The DMA PMC Board Starting Address register specifies the physical address of the board's Dual Port SRAM memory where data will be read/written.

The DMA PMC Board Starting Address Register at PCIBAR0 base address plus 104H (118H) is used to set the DMA channel 0 (1) data starting address. Writing to these registers is possible via 32-bit, 16-bit or 8-bit data transfers.

DMA Transfer Size Registers (Read/Write) - (PCIBAR0 + 108H and 11CH)

The DMA Transfer Size Register is used to set the size of the DMA transfer that moves data between system memory and the board's Dual Port SRAM. The transfer size indicates to total amount of data to transfer, in units of bytes.

The onboard static RAM has 2-MegaByte (standard model) or 8-MegaByte (-1M model) maximum capacity. As such, the maximum value that can be written to this register is 1FFFFF hex (standard model) or 7FFFFF hex (-1M model).

The DMA Transfer Size Register at PCIBAR0 base address +108H (11CH) is used to set the DMA channel 0 (1) data transfer size. Writing to these registers is possible via 32-bit, 16-bit or 8-bit data transfers.

DMA Command Registers (Read/Write) - (PCIBAR0 + 10CH and 120H)

The DMA Command Register is used to set the priority, 64-bit versus 32-bit mode, Scatter Gather enable, and to indicate the command to be used for the DMA transfer.

Writing to these registers is possible via 32-bit, 16-bit or 8-bit data transfers.

Table 3.6 DMA Command Register

DMA transfers must start aligned to a Lword boundary when implemented as a 32-bit transfer and a Double Lword boundary when performing 64bit DMA transfers.

Bit(s)	FUNCTI	ON			
0	Not Used	Not Used (bit is read as logic '0')			
1	Priority: Setting this bit marks the DMA channel as high- priority. A higher-priority channel takes precedence over the second channel and thus has access to the PCI bus more quickly.				
	0	Low Priority			
	1	High Priority			
2	64-bit or	32bit Mode			
	0	32-bit Mode DMA Transfers			
	1	64-Bit Mode DMA Transfers			
3	Scatter-g	pather: Setting this bit enables scatter-gather mode			
	0	Direct DMA Mode			
	1	Scatter-Gather Enabled			
7 to 4	DMA Co	mmand			
	'1110'	Memory Read Burst (Memory Read Line)			
	'1111'	Memory Write Burst (Memory Write and Invalidate)			
8 to 11	DMA Byte Enables				
	'0000'	All bytes are transferred. These bits should always be logic low			

PCIBAR2 MEMORY MAP

The memory space address map used to program the FPGA and flash device is shown in Table 3.7. Note that the base address for the board (PCIBAR2) in memory space must be added to the addresses shown to properly access these registers. Register accesses as 32, 16, and 8-bit transfers in memory space are permitted. All addresses in PCIBAR2 from 0 to 7FFF hex are fixed and cannot be changed by the user via the programmable Virtex5 FPGA.

BAR2 Addr+	D31 D08	D07 D00	BAR2 Addr+		
0003	Not Used ¹	Configuration Status Register	0000		
0007	Not Used ¹	Configuration Control Register	0004		
000B	Not Used ¹	Configuration Data	8000		
000F	Not Used ¹	Flash Status 1 Register	000C		
0013	Not Used ¹	Flash Status 2 Register	0010		
0017	Not Used ¹	Flash Read	0014		
001B	Not Used ¹	Flash Reset	0018		
001F	Not Used ¹	Flash Start Write	001C		
0023	Not Used ¹	Flash Erase Sector	0020		
0027	Not Used ¹	Flash Erase Chip	0024		
002B	Not Used ¹	Flash Data Register	0028		
002F	Not Used ¹	Flash Address 7->0	002C		
0033	Not Used ¹	Flash Address 15->8	0030		
0037	Not Used ¹	Flash Address 23->16	0034		
003B	PCI bus FPGA System Monitor Status/Control Register				
003F	PCI bus FPGA System Monitor Address Register				
0043	Not Used ¹				
+	Not	Not Used ¹			
7FFF	Not	Not Used ¹			

Table 3.7 PCIBAR2 Memory Map

1. The board will return 0 for all addresses that are "Not Used".

18

EXAMPLE DESIGN MEMORY MAP

Table 3.7: Example Design BAR2 Memory Map

1. The board will return 0 for all addresses that are "Not Used".

BAR2 Addr+	D31 D16	D15	D00 BAR2 Addr+
8003	Software Reset and	8000	
8007 ↓ 802B	Mezzanine Memory		8004 ↓ 8028
802F	Rear I/O Connecto	r Read Register	802C
8033	Rear I/O Connecto	or Write Register	8030
8037	DMA Contro	l Register	8034
803B	FPGA Port SR Data Lines	AM Register 31 to 0	8038
803F	FPGA Port SR Data Lines	AM Register 63 to 32	803C
8043	FPGA Port-SRAM	Control Register	8040
8047	FPGA Port-SRAM	Address Register	8044
804B	DMA Channel 0 Threshol	AM) 8048	
804F	DMA Channel 1 Threshol	AM) 804C	
8053	Address Reset Regi	8050	
8057	Address Reset Regi	8054	
805B	PMC Board Iden "A3" for Acromag I	8058	
805F	DDR-SDRAM Co	ontrol Register	805C
8063	DDR-SDRAM Ad	dress Register	8060
8067 806B 806F 8073	DDR-SDRAM Rea D1 D2 D3	!	8064 8068 806C 8070
8077 807B 807F 8083	DDR-SDRAM Wri D1 D2 D3	8074 8078 807C 8080	
8087	DDR-SDRAM N	8084	
808B	Reprogramm System Monitor Statu	8088	
808F	Reprogramm System Monitor A	808C	
8093 3FFFFF	Additional Mezzanine Mod Otherwise N		3137 8090 3FFFFC

19

This memory map reflects byte accesses using the "Little Endian" byte ordering format. Little Endian uses even-byte addresses to store the low-order byte. The Intel x86 family of microprocessors uses "Little Endian" byte ordering. In Big Endian, the lower-order byte is stored at odd-byte addresses.

The VLX/VSX board uses a flash configuration device to store programming information for the Xilinx FPGA. The flash configuration device and FPGA are hardwired together so that during power-up the contents of the configuration device are downloaded to the FPGA. The flash configuration data can be reprogrammed using the PCI bus interface. The following is the general procedure for reprogramming the flash memory and reconfiguration of the Xilinx FPGA:

Flash Configuration

- 1) Disable auto-configuration by setting bit-0 (Stop Configuration) of the Configuration Control register to logic high.
- 2) Clear the Xilinx FPGA of its previous configuration by setting the Configuration Control register bit-2 to logic high. Software must also keep bit-0 set to a logic high.
- 3) Read INIT as logic high (Bit-1 of Configuration Status register) before programming is initiated.
- 4) Verify that the Flash Chip is not busy by reading bit-7, of the Flash Status 2 register at base address plus 10H, as logic 0 before starting a new Flash operation.
- 5) Erase the current flash contents by using the Flash Erase Sector method. Flash erase sectors are implemented by setting bit-0 of the Flash Erase Sector register to logic high. There are 128 flash sectors, which are addressed via the most significant seven flash address lines. The most significant seven flash address lines are set via the Flash Address 23-17 register at base address plus 34H. Issuing a Flash Erase Sector command will erase the contents of the flash chip only in the sector specified.
- 6) Verify that the Flash Chip is not busy by reading bit-7, of the Flash Status 2 register at base address plus 10H, as logic 0 before going to the next step.
- 7) Download the Configuration file to the flash configuration chip via the PCI bus.
 - i) Write the byte to be sent to the Flash Data register at base address plus 28H.
 - ii) Write the address of the Flash Chip to receive the new data byte to the Flash Address registers at base address plus 2CH, 30H, and 34H. Issuing a Flash Start Write will automatically increment this address after the prior Flash Write has been completed. Thus, the address will not need to be set prior to issuing the next Flash Start Write. The first byte of the configuration file should be written to address 0 of the Flash Chip. The Flash Start Write operation will take 9μ seconds to complete.
 - iii) Issue a Flash Start Write command to the Flash Chip by writing logic 1 to bit-0 of base address plus 1CH.
 - iv) Verify that the Flash Chip is not busy by reading bit-7 as logic 0 of the Flash Status 2 register at base address plus 10H before going back to step i to write the next byte.
- 8) Enable auto-configuration by setting bit-0 (Stop Configuration) of the Configuration Control register to logic low.

- 9) Verify that the configuration is complete by reading DONE (bit-0 of Configuration Status Register) as logic high.
- 10) Thereafter, at power-up the configuration file will automatically be loaded into the FPGA.

Direct PCI bus to Xilinx Configuration

Configuration of the Xilinx FPGA can be implemented directly from the PCI bus. The following is the general procedure for re-configuration of the Xilinx FPGA via the PCI bus:

- 1) Disable auto-configuration by setting bit-0 (Stop Configuration) of the Configuration Control register to logic high.
- 2) Clear the Xilinx FPGA of its previous configuration by setting the Configuration Control register bit-2 to logic high.
- 3) Read INIT as logic high (Bit-1 of Configuration Status register) before programming is initiated.
- 4) Download the Configuration file directly to the Xilinx FPGA by writing to the Configuration Data register. The entire configuration file must be written to the Xilinx FPGA one byte at a time to the Configuration Data register at base address plus 08H.
- 5) Verify that the configuration is complete by reading DONE (bit-0 of Configuration Status Register) as logic high. DONE is expected to be logic high immediately after the last byte of the configuration file is written to the Xilinx FPGA.
- 6) At each power-up the configuration file will need to be reloaded into the FPGA.

CONFIGURATION CONTROL REGISTERS

Configuration Status Register (Read Only) – (PCIBAR2 + 0000H)

This read only register reflects the status of configuration complete and Xilinx configuration clear bits. This Configuration Status register is read at base address plus 0H.

Table 3.8: Configuration Status Register

Bit(s)	FUNCTION	
0	DONE:	
	0	Xilinx FPGA is not configured
	1	Xilinx FPGA configuration is complete
1	INIT:	
	0	INIT is held low until the Xilinx is clear of its current configuration
	1	INIT transitions high when the clearing of the current Xilinx configuration is complete
2 to 7	Not Used (bits are read as logic "0")	

Configuration Control (Read/Write) - (PCIBAR2 + 04H)

This read/write register is used to stop Xilinx configuration, and clear Xilinx configuration memory. This Configuration Control register is accessed at base address plus 04H.

Bit(s)	FUNCTION	
0	Stop Xi	linx Configuration:
	0	Enable Xilinx FPGA configuration
	1	Stop Xilinx FPGA configuration (This bit should be set to logic high until after the Flash device is written with valid program data).
1	Not Used (bit is read as logic "0")	
2	Clear Current Xilinx Configuration:	
	0	Logic low has no effect.
	1	Logic high resets the Xilinx configuration logic. Reconfiguration can begin after INIT transitions high.
3 to 7	Not Used (bits are read as logic "0")	

CONFIGURATION CONTROL REGISTERS

Table 3.9: Configuration Control Register

Configuration Data (Write Only) - (PCIBAR2 + 08H)

This write only register is used to write Xilinx configuration data directly to the Xilinx FPGA from the PCI bus. The Configuration Data register is accessed at base address plus 08H. The entire configuration file must be written to the Xilinx FPGA one byte at a time. Configuration complete is verified by reading DONE (bit-0 of the Configuration Status Register) as logic high.

A write to the Configuration Data register while auto-configuration from Flash is active will cause the Xilinx configuration to fail. Auto-configuration is stopped by writing logic 1 to bit-0 of the Configuration Control register at base address plus 04H.

The Xilinx FPGA should also be cleared of its current configuration prior to loading of a new configuration file. The FPGA is cleared of its current configuration by writing logic 1 to bit-2 at address plus 04H.

Flash Status 1 (Read Only) - (PCIBAR2 + 0CH)

This read only register is used to read the DQ5 status of the flash chip. The Flash Status 1 register is at base address plus 0CH.

Bit(s)	FUNCTION	
0 to 4	Not Use	ed (bits are read as logic "1 or 0")
5	DQ5:	
	0	Chip enabled for reading array data.
	1	The system must issue the Flash Reset command to re-enable the device for reading array data if DQ5 goes high. DQ5 will go high during a Flash Start Write, Flash Erase Chip, or Flash Erase Sector operation.
6 and 7	Not Used (bits are read as logic "1 or 0")	

FLASH CONTROL REGISTERS

Table 3.10: Flash Status 1 Register

FLASH CONTROL REGISTERS

Table 3.11: Flash Status 2 Register

Flash Status 2 (Read Only) – (PCIBAR2 + 10H)

This read only register is used to read the ready or busy status of the flash chip. The Flash Status 2 register is at base address plus 10H. The system must first verify that that Flash Chip is not busy before executing a new Flash command. The Flash Chip is busy if bit-7 of this register is set to logic 1. The Flash will always be Busy while bit-0 of the Configuration Control register is set to logic "0".

Bit(s)	FUNCT	ION
0 to 6	Not Used (bits are read as logic "0")	
7	Busy / Ready~ Set bit-0 of the Configuration Control register to logic "1" before monitoring this busy bit.	
	0	Flash Chip is Ready
	1	Flash Chip is Busy

Flash Read (Read Only) – (PCIBAR2 + 14H)

A Flash Read command is executed by reading this register at base address plus 14H. Prior to issue of a Flash Read the Flash Address registers must be set with the desired address to be read. See the Flash Address registers at base address plus 2CH, 30H, and 34H.

The system must issue the Flash Reset command to re-enable the device for reading array data if DQ5 goes high. DQ5 can go high during a Flash Start Write, Flash Erase Chip, or Flash Erase Sector operation. DQ5 can be monitored via the Flash Status 1 register at base address plus 0CH.

Flash Reset (Write Only) – (PCIBAR2 + 18H)

This write only register is used to initiate a reset of the flash chip. A Flash Reset command is executed by writing logic 1 to bit-0 of this register at base address plus 18H. Writing the flash reset command resets the chip to reading data mode. Flash reset can be useful when busy is held active.

Flash Start Write (Write Only) – (PCIBAR2 + 1CH)

This write only register is used to initiate the write of a byte to the flash chip. A Flash Start Write command is executed by writing logic 1 to bit-0 of this register at base address plus 1CH. Prior to issuing of a Flash Start Write the Flash Data and Address registers must be set with the desired data and address to be written. See the Flash Data and Address registers at base address plus 28H, 2CH, 30H, and 34H.

Issuing of a Flash Start Write will automatically increment this address after the previously issued Flash Write has completed. Thus, the address will not need to be set prior to issuing of the next Flash Start Write if consecutive addresses are to be written.

Flash Erase Sector (Write Only) – (PCIBAR2 + 20H)

A Flash Erase Sector command is executed by writing logic 1 to bit-0 of this register at base address plus 20H. Verify that the Flash Chip is not busy from a previous operation before beginning a new operation. This is accomplished by reading bit-7, of the Flash Status 2 register, as logic 0.

There are 128 flash sectors, which are addressed via the most significant seven flash address lines. The most significant seven flash address lines are set via the Flash Address 23-17 register at base address plus 34H. Issuing of a Flash Erase Sector command will erase the contents of the flash chip only in the sector specified.

A flash bit cannot be programmed from logic 0 to logic 1. Only an erase chip operation can convert logic 0 back to logic 1. **Prior to reprogramming of the flash chip a Flash Erase Chip or Flash Erase Sector command must be performed.**

The system can determine the status of the erase operation by reading the Flash Ready/Busy status. Bit-7 of the Flash Status 2 register, at base address plus 10H, will read as logic 0 when chip erase is completed.

Any other flash commands written to the flash chip during execution of the flash erase sector operation are ignored. Note that a hardware reset during the erase sector operation will immediately terminate the operation.

Flash Erase Chip (Write Only) – (PCIBAR2 + 24H)

This write only register is used to erase the entire contents of the flash chip. A flash bit cannot be programmed from logic 0 to logic 1. Only an erase chip operation can convert logic 0 back to logic 1. **Prior to reprogramming of the flash chip a Flash Erase Chip command must be performed.**

A Flash Erase Chip command is executed by writing logic 1 to bit-0 of this register at base address plus 24H. Verify that the Flash Chip is not busy from a previous operation before beginning a new operation. This is accomplished by reading bit-7, of the Flash Status 2 register, as logic 0.

The system can determine the status of the erase operation by reading the Flash Ready/Busy status. Bit-7 of the Flash Status 2 register, at base address plus 10H, will read as logic 0 when chip erase is completed.

Any other flash commands written to the flash chip during execution of the flash erase chip operation will be ignored. Note that a hardware reset during the chip erase operation will immediately terminate the operation.

Flash Data Register (Read/Write) – (PCIBAR2 + 28H)

This read/write register holds the data byte which is sent to the flash chip upon issuing of a Flash Start Write command.

Although only the least significant 8 bits of this register are used, reading or writing this register is possible via 32-bit, 16-bit or 8-bit data transfers.

FLASH CONTROL REGISTERS

FLASH REGISTERS

Flash Address 7->0 (Read/Write) – (PCIBAR2 + 2CH)

This read/write register holds the least significant byte of the address to which the flash chip is written upon issue of a Flash Start Write command.

Although only the least significant 8 bits of this register are used, reading or writing this register is possible via 32-bit, 16-bit or 8-bit data transfers.

Flash Address 15->8 (Read/Write) – (PCIBAR2 + 30H)

This read/write register sets bits 15 to 8 of the address to which the flash chip is written upon issue of a Flash Start Write command.

Although only the least significant 8 bits of this register are used, reading or writing this register is possible via 32-bit, 16-bit or 8-bit data transfers.

Flash Address 23->16 (Read/Write) – (PCIBAR2 + 34H)

This read/write register sets bits 23 to 16 of the address to which the flash chip is written upon issue of a Flash Start Write command.

Reading or writing this register is possible via 32-bit, 16-bit or 8-bit data transfer.

SYSTEM MONITOR REGISTERS U5 PCI bus

System Monitor Status/Control Register (Read/Write) – (PCIBAR2 + 38H)

This read/write register will access the system monitor register at the address set in the System Monitor Address Register.

For example, the address of the System Monitor Status register that is to be accessed is first set via the System Monitor Address register at PCIBAR2 plus 3CH. Next, this register at PCIBAR2 plus 38H is read. Bits 22 to 16 of this register hold the address of system monitor register that is accessed. Data bits 15 to 6 of this register hold the temperature, Vccint, or Vccaux value. Data bits 5 to 0 are not used. Valid addresses are given in column one of Table 3.12.

Reading or writing this register is possible via 32-bit data transfers.

The 10-bits digitized and output from the ADC can be converted to temperature by using the following equation.

$$Temperature(^{\circ}C) = \frac{ADCcode \times 503.975}{1024} - 273.15$$

The 10-bits digitized and output from the ADC can be converted to voltage by using the following equation.

$$SupplyVoltage(volts) = \frac{ADCcode}{1024} \times 3V$$

System Monitor Address Register (Write Only) – (PCIBAR2 + 3CH)

This write only register is used to set the system monitor address register with a valid address for the System Monitor internal status or control registers. Valid addresses are given in the following table. Additional addresses can be found in the Xilinx System Monitor document UG192 (available from Xilinx). Writing this register is possible via 32-bit data transfers.

The address value written to this register can be read on bits 22 to 16 of the System Monitor Status/Control register at PCIBAR2 plus 38H.

Address	Status Register
00h	Temperature
01h	Vccint
02h	Vccaux
20h	Maximum Temperature
21h	Maximum Vccint
22h	Maximum Vccaux
24h	Minimum Temperature
25h	Minimum Vccint
26h	Minimum Vccaux

Table 3.12: System Monitor Register Map

Software Reset and Status Register (Read/Write) – (PCIBAR2 + 8000H)

This read/write register is used to Software reset the board, monitor the status of board interrupts, and select the on board active clock.

Bits 0 to 7 of this register are used to monitor the interrupt pending status of interrupts originating from the front mezzanine module.

Bit 8 of this register controls the USERo signal. The USERo control signal is used to select between the 133MHz clock and the user defined clock (PLL_CLK). The user defined clock is defined in the example code of the FPGA and output on signal PLL_CLK. The Digital Clock Manager of the FPGA offers a wide range of clock management features including clock multiplication and division for generation of a user defined clock (PLL_CLK). A 133MHz crystal generated clock signal (FPGA_CLK_PLL) is input to the FPGA for use in generation of the user-defined clock signal PLL_CLK. The PLL_CLK can be a minimum of 10MHz and a maximum of 133MHz. Since the PLL_CLK signal is generated and driven by the FPGA, it will only be available after the FPGA is configured. See the example VHDL file included in the engineering design kit and the Xilinx documentation on the Digital Clock Manager for more information.

The USERo signal is controlled via a bit-8 of the Software Reset and Status Register at PCIBAR2 plus 8000H. The USERo control bit-8 at by default is set to a logic low to select the PLL_CLK clock as the board clock frequency. Bit-8 set to logic high will select the 133MHz clock as the board clock frequency.

PCIBAR2 U7 FPGA REGISTERS

USERo CLOCK CONTROL

Note USERo selects the Local bus clock.

Bits 15 to 13 of this register will read "001" for all Acromag digital I/O mezzanine modules. These bits will read "010" when the AXM-A30 high speed analog input mezzanine module is present.

Bits 27 and 28 are DMA acknowledgement bits and will read a logic high while the corresponding DMA channel transfer is active.

Bit-29 indicates the completion of initialization and calibration of the DDR2 controller.

Bit 31 of this register when set to a logic "1" will issue a reset signal to the FPGA hardware.

Reading or writing to this register is possible via 32-bit, 16-bit or 8-bit data transfers.

Table 3.13: Software Reset and Status Register

1. All bits labeled "Not Used" will return logic "0" when read.

BIT	FUNCTION		
7-0	Mezzanine interrupt status is identified via data bits 0 to 7. Read of a "1" indicates that an interrupt is pending for the corresponding data bit. A pending interrupt will remain active until disabled via the mezzanine interrupt control registers.		
	Logic "0"	Interrupt Not Pending	
	Logic "1"	Interrupt Pending	
	USERo Control	December 19 10 10 10 10 10 10 10 10 10 10 10 10 10	
8	Logic "0"	Board clock = PLL_CLK (Default)	
	Logic "1"	Board clock 133MHz	
12-9 ¹	Not Used ¹		
15-13	Mezzanine Identification Code: "001" for all Acromag digital I/O mezzanine boards "010" for the AXM-A30 mezzanine board		
26-16	Not Used ¹		
27	DACK0 Status Logic high is a valid acknowledgement for DMA channel 0		
28	DACK1 Status Logic high is a valid acknowledgement for DMA channel 1		
29	Phy_init_done Status		
30	Not Used ¹		
	The most signific logic "1" will issu	cant bit of this register when set to a e a software reset.	
Bit-31	Logic "0"	No Operation	
	Logic "1"	Software reset issued to Xilinx user- programmable FPGA	

Rear I/O Connector Read Register (Read Only) - (PCIBAR2 + 802CH)

REAR Read REGISTER

The Rear I/O Connector Read Register is used to read the LVDS input status of 16 channels. This example design has 16 channels, identified in Table 3.14, programmed as LVDS input only channels. Table 2.1 shows each channel and it's corresponding P4 connector pin assignment.

This Rear I/O Connector Read register is a read only register and writing to this register has no effect on the LVDS input channels. Reading from this register is possible via 32-bit, 16-bit or 8-bit data transfers.

Rear I/O Connector Write Register (Read/Write) - (PCIBAR2 + 8030H)

The Rear I/O Connector Write Register is used to set 16 LVDS output channels. This example design has 16 channels, identified in Table 3.11, fixed as LVDS output only channels. Table 2.1 shows the P4 connector pins and their corresponding channel identifiers.

This Rear I/O Connector Write register is written to set the LVDS output channels and can also be read to verify the output channel settings. Reading from this register is possible via 32-bit, 16-bit or 8-bit data transfers.

Write/Read Data Register Bit	Rear Connector Write Output Channels	Rear Connector Read Input Channels
0	1	0
1	2	3
2	4	5
3	6	7
4	8	9
5	10	11
6	12	13
7	14	15
8	16	17
9	18	19
10	20	21
11	22	23
12	24	25
13	26	27
14	28	29
15	30	31
16-31	Not Used ¹	Not Used ¹

REAR Write REGISTER

Table 3.14: Rear I/O Registers

Column 1 identifies the write data bit that drives the output channel listed in column 2. Column 1 also identifies the read data bit that returns the input channel listed in column 3. For example data bit 0 drives output channel 1 when written and returns channel 0 register setting when read.

1. All bits labeled "Not Used" will return logic "0" when read.

DMA REGISTERS AT PCIBAR2

DMA Control Register (Read/Write) - (PCIBAR2 + 8034H)

The DMA Control Register is used to request a DMA Demand mode transfer. The hardware signals **DREQ0** and **DREQ1** are driven active by software setting of bits 0 or 1 of this register to request the DMA transfer. The transfer must include the Static RAM Memory as either the source or the destination.

For software triggered DMA, bit-0 is used to request a DMA channel 0 transfer while bit-1 is used to request a channel 1 transfer. The bit must be set to logic high to request a transfer. Once set, the bit will remain asserted until the DMA transfer has completed. If both bits are set simultaneously, the channel 0 DMA transfer will be implemented first followed by channel 1.

In a user application a data ready condition, such as a memory buffer full condition, can be physically tied (via logic in the FPGA) to the DREQ0 or DREQ1 FPGA signals to cause the DMA transfer to start.

DUAL PORT SRAM REGISTERS

FPGA- SRAM Data Register (Read/Write) – (PCIBAR2 + 8038H and 803CH)

The FPGA-SRAM Data Read Register is provided to access the SRAM port that links directly to the user-programmable Virtex-5 FPGA. Reading or writing PCIBAR2 + 8038H accesses the SRAM least significant data lines 31 to 0. Reading or writing PCIBAR2+ 803CH accesses the most significant SRAM data lines 63 to 32. Reading or writing these registers is only possible in 32-bit transfers. The address for the SRAM read or write is initialized by the Dual Port SRAM Internal Address register at PCIBAR2 + 8044H. With each additional read or write to PCIBAR2+ 803CH the address is automatically incremented.

Writing the SRAM would proceed by first setting the Address register at PCIBAR2 + 8044H. Next the least significant 32-bit data word is written to PCIBAR2 + 8038H. Finally, after the most significant 32-bit data word is written at PCIBAR2+ 803CH the address is automatically incremented.

FPGA-Port SRAM Control Register (Read/Write) – (PCIBAR2 + 8040H)

This read/write register is used to control the Dual-Port SRAM including enabling write, automatic DMA transfer and automatic address reset on DMA thresholds.

The default power-up state of this register is logic low. A reset will set all bits in this register to "0". Reading or writing to this register is possible via 32-bit, 16-bit or 8-bit data transfers.

BIT	FUNCTION			
0	This bit controls the vhdl signal SRAM_ENABLE. This signal must be set to logic high to enable writes to SRAM from the FPGA. The SRAM Internal Address register must also be set with the start address at which the data begins filling the SRAM.			
	Logic "0"	Disable Write and Enable Read		
	Logic "1"	Enable Write and Disable Read		
1	If enabled via this bit a DMA channel 0 request will be issued when the internal address counter is equal to the DMA Channel 0 Threshold Register. This will have the same effect as writing a 1 to bit 0 of the DMA Control Register at PCIBAR2 plus 8034H. See Synchronous DP-SRAM in Section 4.0 for further details on using this feature. ²			
	Logic "0"	Disable Auto DMA Request Channel 0		
	Logic "1"	Enable Auto DMA Request Channel 0		
2	If enabled via this bit a DMA Channel 1 request will be issued when the internal address counter is equal to the DMA Channel 1 Threshold Register. This will have the same effect as writing a 1 to bit 1 of the DMA Control Register at PCIBAR2 plus 8034H. ²			
	Logic "0"	Disable Auto DMA Request Channel 1		
	Logic "1"	Enable Auto DMA Request Channel 1		
3	If enabled via this bit the Internal Address Counter will be loaded with the value in Address Reset Register 0 when the counter is equal to the DMA Channel 0 Threshold Register. See the Address Reset Register description for further details. DMA does not have to be enabled to use this feature. ³			
	Logic "0"	Disable Add. Reset on DMA Ch. 0 Threshold		
	Logic "1"	Enable Add. Reset on DMA Ch. 0 Threshold		
4	If enabled via this bit the Internal Address Counter will be loaded with the value in Address Reset Register 1 when the counter is equal to the DMA Channel 1 Threshold Register. See the Address Reset Register description for further details. DMA does not have to be enabled to use this feature. ³			
	Logic "0"	Disable Add. Reset on DMA Ch. 1 Threshold		
	Logic "1"	Enable Add. Reset on DMA Ch. 1 Threshold		
5-15	Not Used ¹			

Table 3.15: FPGA-Port SRAM Control Register

- 1. Bits are not used and will return logic "0" when read.
- 2. All DMA transfer settings in the DMA Registers at PCIBAR0 should be set prior to enabling automatic DMA transfers.
- 3. WARNING: Before enabling Address Reset on DMA Thresholds (bits 3 & 4), verify that the "DMA Ch. 0 Threshold Register" is not equal to the "Address Reset Register 0" and the "DMA Ch. 1 Threshold Register" is not equal to the "Address Reset Register 1." If these registers are equal and automatic reset is enabled an infinite loop will be created within the internal logic of the FPGA.

30

DP-SRAM REGISTERS

Warning: To guarantee functionality disable DP-SRAM write cycles (via bit 0 of the DP-SRAM Control Registers) before writing to the DP-SRAM Internal Address Register.

Table 3.16: FPGA-Port SRAM Internal Address Register

Note: An SRAM DMA Request will occur only <u>after</u> a data write cycle to the address defined by the DMA Threshold Registers.

FPGA-Port SRAM Internal Address Register (Read/Write) – (PCIBAR2 + 8044H)

The FPGA-Port SRAM Internal Address Register is used to view and set the internal SRAM address. The FPGA will only write using 64-bit data transfers allowing for 3FFFF hex (standard model) or FFFFF hex (-1M model) unique memory accesses. **Reading** this register will return the internal SRAM address. *Due to delays during data processing and the PCI transfer the actual internal address may be slightly greater than the address read.* **Writing** to this register will set the Internal SRAM Address to the provided value. Bits 0 to 17 of this register are used on the standard model while bits 0 to 19 are used for the -1M model. Writing logic '1' to bit 31 of this register or a system reset will cause the Internal SRAM Address to reset to "00000H" (the start of the SRAM memory). **Reading or writing to this register is possible via 32-bit data transfers, only.**

The SRAM Internal Address will automatically be incremented upon a write or read of the most significant SRAM Data Port at PCIBAR2+ 803CH.

FPGA-Port SRAM Internal Address Register		
D31	D30-D18 (standard) D30-D20 (-1M)	D17-D0 (standard model) D19-D0(-1M model)
SRAM Internal Address Reset	Not Used (Read as logic '0')	SRAM Internal Address

FPGA-Port SRAM DMA Channel 0/1 Threshold Registers (Read/Write) – (PCIBAR2 + 8048H/ 804CH)

The FPGA-Port SRAM DMA Channel 0/1 Threshold Registers are used to initiate an automatic DMA transfer. When the internal address counter is equal to the value in the DMA Channel 0 Threshold Register, a Channel 0 DMA request will be initiated. Similarly, when the internal address counter is equal the value in the DMA Channel 1 Threshold Register and there is valid data at that address, a Channel 1 DMA request will be initiated. This feature must be enabled via bits 1 and 2 (for Channels 0 & 1, respectively) of the FPGA-SRAM Control Register. Note that DMA settings must be set prior to the initiated transfer on both the PCIBAR0 and PCIBAR2 registers. A DMA transfer in progress is indicated via bits 0 and 1, for DMA Channels 0 and 1, respectively, in the DMA Control Register. See the DMA Registers section of this manual for further details. Reading of the Threshold register will return the corresponding DMA Threshold. Writing the Threshold registers will set the corresponding DMA Threshold to the provided value. Bits 0 to 17 of this register are used on the standard model while bits 0 to 19 are used for the -1M model. Reading or writing to this register is possible via 32-bit data transfers only.

FPGA-Port SRAM DMA Channel 0/1 Threshold Registers		
Register	D30-D18 (standard) D30-D20 (-1M)	D17-D0 (standard model) D19-D0(-1M model)
DMA Channel 0 Threshold Reg.	Not Used (Read as logic '0')	1FFFFH (standard model) 7FFFFH (-1M model)
DMA Channel 1 Threshold Reg.	Not Used (Read as logic '0')	3FFFFH (standard model) FFFFFH (-1M model)

Table 3.17: Dual-Port DMA Threshold Registers

FPGA-Port SRAM Address Reset Registers 0/1 (Read/Write) – (PCIBAR2 + 8050H/ 8054H)

The FPGA-Port SRAM Address Reset Registers are used to reset the internal address counter to a user-defined value immediately upon reaching the DMA Threshold value. For example, after an SRAM write cycle where the internal address counter is equal to the value defined in the DMA Channel 0 Threshold Register, the internal address counter will then be loaded with the value defined in the Address Reset Register 0. Similarly, after a SRAM write cycle where the internal address counter is equal to the value defined in the DMA Channel 1 Threshold Register, the internal address counter will then be loaded with the value defined in the Address Reset Register 1. This allows for the internal address counter to be changed without any interruption in the transfer of data from the front connector input to the DP-SRAM. This feature must be enabled via bits 3 and 4 (for Channel 0 & 1 thresholds, respectively) of the FPGA Port-SRAM Control Register. Note that the DMA transfers do not have to be enabled for this feature to function. Reading of either register will return the corresponding internal address reset value. Writing this register will set the corresponding internal address reset register to the provided value. Bits 0 to 17 of this register are used on the standard model while bits 0 to 19 are used for the -1M model. The most significant bits are not used and will return logic '0' when read. A system reset will cause these registers to reset to "00000H".

DP-SRAM REGISTERS

WARNING: The "DMA Ch. 0 Threshold Register" must not equal the "Address Reset Register 0" and the "DMA Ch. 1 Threshold Register" must not equal the "Address Reset Register 1." If these registers are equal and the address reset is enabled via the FPGA Port-SRAM Control Register an infinite loop will be created within the internal logic of the FPGA.

PMC Board Identification Code Register (Read Only) - (PCIBAR2 + 8058H)

The PMC Board Identification Code register at PCIBAR2 plus 8058H stores an ID code that can used to uniquely identify the PMC Virtex 5 card. This register will read A3 hex as provided by the Acromag example design. The user can change the hardware setting of this register in the programmable FPGA code. This ID code can be used to properly assign software drivers to multiple PMC boards that may have the same device and vender ID in a given system.

Reading from this register is possible via 32-bit, 16-bit or 8-bit data transfers.

ID Code REGISTER

DDR-SDRAM REGISTERS

DDR SDRAM Control Register (Read/Write) – (PCIBAR2 + 805CH)

This read/write register is used to control burst read or write to DDR SDRAM. In addition a DDR-SDRAM error status bit is. The DDR-SDRAM is set for a burst length of four and will require the DDR-SDRAM Write register to be preloaded with four 32-bit data values prior to issuing the write operation. The DDR-SDRAM Read register will contain four 32-bit data values following the issue of a read operation. For either a read or write the DDR-SDRAM Address register must be written with the desired command and address location for the access.

Table 3.18: DDR-SDRAM Control Register

All bits labeled "Not Used" will return logic "0" when read.

BIT		FUNCTION
0	Start DDR-SDRAM write operation. The DDR-SDRAM Write and Mask registers must first be written with the desired data that are to be burst out to the DDR-SDRAM. In addition, the DDR-SDRAM Address register must be written with the write address and command prior to setting this bit.	
		No operation performed
		Write Transfer Performed
1	Register must be and the read cor DDR-SDRAM Rewords that are re	AM read operation. The Address written with the start address location mmand prior to setting this bit. The ead registers are filled with four data and in a burst from the DDR-SDRAM.
	Logic "0"	No operation performed
	Logic "1"	Read Transfer Performed
2-25	Not Used ¹	
26	WDF_Almost_Full: DDR Write data FIFO is almost full when this bit is Logic "1". Software can monitor to avoid over filling the write data FIFO.	
27	AF_Almost_Full: DDR Address FIFO is almost full when this bit is Logic "1". Software can monitor to avoid over filling the DDR Address FIFO.	
28-31	Not Used ¹	

DDR SDRAM Address Register (Read/Write) -(PCIBAR2 + 8060H)

This read/write register is used to set the DDR-SDRAM column address, row address, bank, chip select, and command. This register must be written prior to initiating a DDR-SDRAM read or write burst transfer via bits 0 or 1 of the DDR-SDRAM Control register.

BIT	FUNCTION		
A9-A0	DDR-SDRAM Column address is written to these bits. A column address is required when a read or write command is present on bits 29 to 31. There are 1024 unique columns.		
A22-A10	The DDR-S	The DDR-SDRAM Row address is written to these bits. There are 8192 unique rows,	
A24,A23		The DDR-SDRAM Bank address (BA1, BA0) is written to these bits. The DDR-SDRAM has four unique banks.	
A28-A25 ¹	Not Used ¹		
	DDR-SDRAM Command		
A31-A29	Logic "000"	Write The write burst access is initiated to the row given on bits A10 to A22. The value on A24 and A23 selects the bank address (BA1 and BA0), while the value on A9 to A0 selects the starting column location.	
	Logic "001"	Read The read burst access is initiated to the row given on bits A10 to A22. The value on A24 and A23 selects the bank address (BA1 and BA0), while the value on A9 to A0 selects the starting column location.	
	Logic "010" To "111"	Invalid combinations. Functionality of the controller is unpredictable for these commands.	

Table 3.19: DDR-SDRAM Address/Command Register

1. All bits labeled "Not Used" will return logic "0" when read.

DDR SDRAM Read Registers (Read Only) – (PCIBAR2 + 8064H to 8070H)

The four DDR-SDRAM Read registers are read only and hold the last four data values read from the DDR-SDRAM. The DDR-SDRAM is set for a burst of four for the purposes of this design example.

A DDR-SDRAM read is implemented by executing the following steps.

 Set the DDR-SDRAM Address register with the starting address location and read command. Write the following value to the SDRAM Address Register at 8060H.

A31-A29	A28-A25	A24,A23	A22-A10	A9-A0
001	X	Bank	Row	Column

 Set the start read bit of the DDR-SDRAM Control register at base address + 805C. Set bit-1 of the SDRAM Control Register at 805CH to logic high.

The data is read from the SDRAM and moved to the SDRAM Read Registers at 8064H to 8070H. Read of these registers directly after write of logic 1 to the SDRAM Control Register at 805CH can result in a read error. To ensure the SDRAM data has been written into the Read register, a 500ns delay after issue of start read via the DDR-SDRAM Control register may be necessary. Reading these registers is possible via 32, 16 or 8-bit transfers.

Table 3.20: DDR-SDRAM Read Registers

DDR SDRAM Read Registers			
Base Addr+	D31-D0	Base Addr+	
8067	DDR-SDRAM Read Register D0	8064	
806B	DDR-SDRAM Read Register D1	8068	
806F	DDR-SDRAM Read Register D2	806C	
8073	DDR-SDRAM Read Register D3	8070	

DDR SDRAM Write Registers (Read/Write) – (PCIBAR2 + 8074H to 8080H)

The four DDR-SDRAM Write registers hold four data values that are to be written to the DDR-SDRAM. The DDR-SDRAM is set for a burst of four for the purposes of this design example.

A DDR-SDRAM write is implemented by executing the following steps.

1) Write the four 32-bit data values that are to be written to the DDR-SDRAM to the registers at base address + 8074H to 8080H.

DDR SDRAM Write Registers			
Base Addr+	D31-D0	Base Addr+	
8077	DDR-SDRAM Write Register D0	8074	
807B	DDR-SDRAM Write Register D1	8078	
807F	DDR-SDRAM Write Register D2	807C	
8083	DDR-SDRAM Write Register D3	8080	

Table 3.21: DDR-SDRAM Write Registers

- 2) Set the DDR-SDRAM Mask bits as desired at base address + 8084H. A value of 0H would enable all bytes to be written.
- 3) Issue the Write Command
 - Set the DDR-SDRAM Address register with the starting address location and write command. Write the following value to the SDRAM Address Register at 8060H.

A31-A29	A28-A25	A24,A23	A22-A10	A9-A0
000	X	Bank	Row	Column

 Set the start write bit of the DDR-SDRAM Control register at base address + 805C. Set bit-0 of the SDRAM Control Register at 805CH to logic high.

DDR SDRAM Mask Register (Read/Write)-(PCIBAR2 + 8084H)

The DDR-SDRAM mask register holds the write mask data bits that accompany the write data as it is written to the DDR-SDRAM. If a given data mask (DM) bit is set low, the corresponding data will be written to memory; if the DM bit is set high, the corresponding data will be ignored, and a write will not be executed to that byte location. The DDR-SDRAM is set for a burst of four for the purposes of this design example.

Table 3.22: DDR-SDRAM Mask Register

2. All bits labeled "Not Used" will return logic "0" when read.

DDR SDRAM Mask Register Bit	Write Register	Byte Masked	
0		Byte 0 (D0 to D7)	
1	D0	Byte 1 (D8 to D15)	
2		Byte 2 (D16 to D23)	
3		Byte 3 (D24 to D31)	
4		Byte 0 (D0 to D7)	
5	D1	Byte 1 (D8 to D15)	
6		Byte 2 (D16 to D23)	
7		Byte 3 (D24 to D31)	
8	D2	Byte 0 (D0 to D7)	
9		Byte 1 (D8 to D15)	
10		Byte 2 (D16 to D23)	
11		Byte 3 (D24 to D31)	
12		Byte 0 (D0 to D7)	
13	D3	Byte 1 (D8 to D15)	
14		Byte 2 (D16 to D23)	
15		Byte 3 (D24 to D31)	
16-31	Not Used ¹		

Read or writing this register is possible via 32, 16 or 8-bit transfers.

SYSTEM MONITOR REGISTERS U7 FPGA

System Monitor Status/Control Register (Read/Write) – (PCIBAR2 + 8088H)

This read/write register will access the system monitor register at the address set in the System Monitor Address Register at PCIBAR2 plus 808CH.

For example, the address of the System Monitor Status register that is to be accessed is first set via the System Monitor Address register at PCIBAR2 plus 808CH. Next, this register at PCIBAR2 plus 8088H is read. Bits 22 to 16 of this register hold the address of the system monitor register that is accessed. Data bits 15 to 6 of this register hold the temperature, Vccint, or Vccaux value. Data bits 5 to 0 are not used. Valid addresses are given in column one of Table 3.23.

Reading or writing this register is possible via 32-bit data transfers.

The 10-bits digitized and output from the ADC can be converted to temperature by using the following equation.

$$Temperature(^{\circ}C) = \frac{ADCcode \times 503.975}{1024} - 273.15$$

The 10-bits digitized and output from the ADC can be converted to voltage by using the following equation.

$$SupplyVoltage(volts) = \frac{ADCcode}{1024} \times 3V$$

System Monitor Address Register (Write Only) – (PCIBAR2 + 808CH)

This write only register is used to set the system monitor address register with a valid address for the System Monitor internal status or control registers. Valid addresses are given in the following table. Additional addresses can be found in the Xilinx System Monitor document UG192 (available from Xilinx). Reading or writing this register is possible via 32-bit data transfers.

The address value written to this register can be read on bits 22 to 16 of the System Monitor Status/Control register at PCIBAR2 plus 8088hex.

Address	Status Register
00h	Temperature
01h	Vccint
02h	Vccaux
20h	Maximum Temperature
21h	Maximum Vccint
22h	Maximum Vccaux
24h	Minimum Temperature
25h	Minimum Vccint
26h	Minimum Vccaux

Table 3.23: System Monitor Register Map

DUAL PORT MEMORY

A 256K x 64-bit (standard model) or 1Meg x 64-bit (-1M model) Dual Port synchronous SRAM (DP-SRAM) is provided on the VLX/VSX board. One port of the SRAM connects directly to the local bus to allow for PCI access. The remaining port connects directly with the user-programmable FPGA. This design allows for the user to maximize data throughput between the Field I/O's and the controlling processor.

There are two automatic DMA initiators available that will trigger upon a user set threshold. Furthermore, upon a DMA transfer, the internal counter can be reset to a user specified value. See DMA Registers for more information on these operations. These features can be individually controlled through the SRAM Control Registers.

Static RAM Memory (Read/Write) – (PCIBAR1 + 000000H to 1FFFFFH) (Standard model) (PCIBAR1 + 000000H to 7FFFFFH) (-1M model)

The Static RAM memory space is used to provide read or write access to on board SRAM memory. This memory space allows access to the SRAM from the port on the PCI bus side of the SRAM. The Static RAM device has a 256K x 64-bit memory configuration for the standard models and 1Meg x 64-bit for the -1M model. Reading or writing to this memory space using DMA access is also only possible in 32-bit or 64-bit transfers.

The FPGA-Port SRAM Register at PCIBAR2 + 8038H and 803CH are provided for testing the SRAM port that links directly to the user-programmable Virtex-5 FPGA.

STATIC RAM MEMORY

PCIBAR1 MEMORY MAP

4.0 THEORY OF OPERATION

PCI INTERFACE LOGIC

This section contains information regarding the design of the board. A description of the basic functionality of the circuitry used on the board is also provided. Refer to the Block Diagram shown in Drawing 4502-082 as you review this material.

The PCIx bus interface logic on this board provides a 100Mhz, 66MHz, or 33MHz 64/32-bit interface to the carrier/CPU board per PCI Local Bus Specification 3.0. The interface to the carrier/CPU board allows complete control of all board functions.

Note that the VLX/VSX board requires that system 3.3 volts be present on the PCI bus 3.3V pins. There are some older systems that do not provide 3.3 Volts on the PCI bus 3.3 volt pins. The VLX/VSX boards will not work in those systems.

This is a master/target board, with the PCI bus interface logic contained within the board. This logic includes support for PCI commands, including: configuration read/write, and memory read/write. In addition, the PCI interface performs target abort, retry, and disconnect. The logic also implements interrupt requests via interrupt line INTA#.

The board becomes the PCI bus master to perform DMA transfers on channels 0 and 1. The DMA transfers can be started via software or hardware. Hardware signal DREQ0# driven active by the programmable FPGA will start a DMA channel 0 transfer. Hardware signal DREQ1# driven active will start a DMA channel 1 transfer. To identify the pins corresponding to these signals, see the user constraints (.UCF) file provided in the engineering design kit. The DACK0# and DACK1# signals will go active upon the start of a DMA transfer and remain active until its completion. The example device driver software (purchased separately) can be used to exercise DMA block (software) and demand (hardware) modes of operation.

A 256K x 64-bit (standard model) 1Meg x 64-bit (-1M model) synchronous Dual-Port SRAM is provided on the board. One port of the SRAM interfaces to the PCI bus interface chip, the Xilinx Virtex-5 LX30 device (U5). The other port connects directly to the programmable FPGA (U7). This configuration allows for a continuous data flow from the field inputs through the FPGA to the SRAM and then to the PCI bus. Both ports of the SRAM operate in Pipeline mode. This allows for faster operational speed but does cause a one-cycle delay during read operations. The pins corresponding to the control signals, address, and data buses are in the user constraint (.UCF) file provided in the engineering design kit.

The SRAM port connected directly to the user-programmable FPGA (U7) supports continuous writes or single cycle reads. The SRAM port connected to the PCI bus, through U5, supports reading and writing using a continuous, single cycle, or DMA transfers. For single cycle accesses address and control signals are applied to the SRAM during one clock cycle, and either a write will occur on the next cycle or a read in two clock cycles. DMA accesses operate using the continuous burst method for maximum data throughput. The control signal, starting address, and data (if writing) are applied to the SRAM during one clock cycle. Then, during a write DMA transfer, new data is applied to the bus every subsequent clock cycle until the transfer is complete.

SYNCHRONOUS Dual-Port SRAM

39

During DMA transfers the address is held constant and incremented internally in the Dual-Port SRAM. Please refer to the IDT70T3519S133BC (standard model) or IDT70T3509SM (-1M model) Data Sheet (See Related Publications) for more detailed information.

The board contains two 32M \times 16-bit DDR2 SDRAM devices. The DDR2 SDRAM uses a double data rate architecture to achieve high-speed operation. The double data rate architecture has an interface designed to transfer two data words per clock cycle.

DQS is edge-aligned with data for reading data and center-aligned with data for writing data. The DDR2 SDRAM provides for programmable read or write burst lengths of four locations. The example design provided by Acromag is designed for a fixed burst length of four. A burst length of 8 is also available but not supported by the Acromag example design.

The DDR2 SDRAM operates from a differential clock (DDR2_CK and DDR2_CK_n); the crossing of DDR2_CK going HIGH and DDR2_CK_n going LOW will be referred to as the positive edge of DDR2_CK. Commands (address and control signals) are registered at every positive edge of DDR2_CK. Input data is registered on both edges of DQS, and output data is referenced to both edges of DQS as well as to both edges of DDR2_CK.

The local bus interface between the PCI bus interface chip (U5) and the user-programmable FPGA (U7) consists of the following signals.

The Local Address bus (LA) bits 21 to 2 are used to decode the 4M byte address space allocated by the PCI bus to BAR2. Also, LA(26) bit-26 of the local address bus is logic high when the PCI bus is performing an access to BAR2 address space.

LBE0_n, LBE1_n, LBE2_n and LBE3_n are the local bus byte enables. LBE0_n when logic low indicates that the least significant byte on data lines D7 to D0 is selected for the read or write transfer. Likewise LBE3_n when logic low indicates that the most significant byte on data lines D31 to D24 is selected for the read or write transfer.

The Local Data (LD) bus bits 31 to 0 are bi-directional signals used for both read and write data transfers.

ADS_n, the address data strobe signal, will pulse low for one local bus clock cycle at the start of a new read or write access. The ADS_n signal is driven by the PCI bus interface chip (U5).

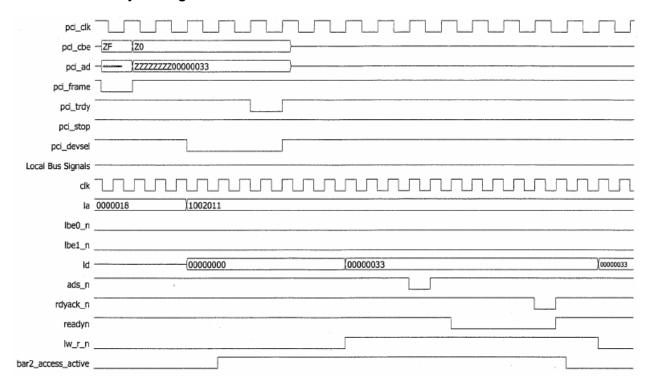
Readyn must be driven low by the programmable FPGA (U7) and held low until RdyAck_n is driven low by the PCI bus interface chip (U5). This is shown on the write and read diagrams that follow.

The LW_R_n signal, when logic high, indicates a write transfer in which data is moving from the PCI bus to the reprogrammable FPGA (U7). This signal, when logic low, indicates a read transfer in which data is moving from the reprogrammable FPGA (U7) to the PCI bus.

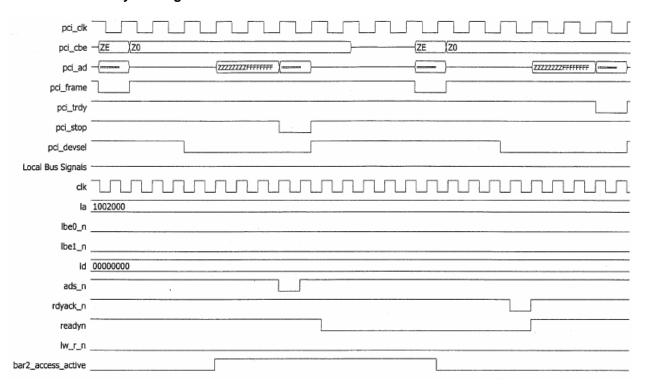
THEORY OF OPERATION CONTINUED

DDR2 SDRAM

Local Bus Signals


The BAR2_Access_Active signal shown in the write and read diagrams is local to the PCI bus FPGA (U5). This signal is used to properly respond to the PCI bus access.

Local Bus CLOCK CONTROL


Clk, the local bus clock, as seen in the Local Bus Write and Read Cycle Diagram can be one of two sources. By default clk is a Digital Clock Manager (DCM) generated 53.2MHz frequency. Clk can also be selected to be the on board 133MHz frequency.

The Local bus clk signal is controlled by USERo. The board clock is routed to the Dual Port SRAM and user-programmable FPGA (U7) using a low skew clock driver (Cypress CY23EP05). The on board 133MHz crystal oscillator is input to the user-programmable FPGA via signal FPGA_CLK_PLL. After the user-programmable FPGA (U7) is configured, an FPGA DCM generated clock signal (PLL_CLK) is selected as the board clock (the default condition). By setting bit-8 of the Software Reset and Status register, at PCIBAR2 plus 8000H, to a logic high the 133MHz clock may be selected as the board clock. By setting bit-8 to a logic low the PLL_CLK becomes the board clock frequency. The default state of bit-8 is logic low.

Local Bus Write Cycle Diagram

Local Bus Read Cycle Diagram

5.0 SERVICE AND REPAIR

PMC-VLX/VSX User's Manual

Surface-Mounted Technology (SMT) boards are generally difficult to repair. It is highly recommended that a non-functioning board be returned to Acromag for repair. The board can be easily damaged unless special SMT repair and service tools are used. Further, Acromag has automated test equipment that thoroughly checks the performance of each board. When a board is first produced and when any repair is made, it is tested, placed in a burn-in room at elevated temperature, and retested before shipment.

SERVICE AND REPAIR ASSISTANCE

Please refer to Acromag's Service Policy Bulletin or contact Acromag for complete details on how to obtain parts and repair.

PRELIMINARY SERVICE **PROCEDURE**

Before beginning repair, be sure that all of the procedures in Section 2, Preparation For Use, have been followed. Also, refer to the documentation of your carrier/CPU board to verify that it is correctly configured. Replacement of the board with one that is known to work correctly is a good technique to isolate a faulty board.

CAUTION: POWER MUST BE TURNED OFF BEFORE REMOVING OR **INSERTING BOARDS**

If you continue to have problems, your next step should be to visit the Acromag worldwide web site at http://www.acromag.com. Our web site contains the most up-to-date product and software information.

WHERE TO GET HELP

www.acromag.com

Acromag's application engineers can also be contacted directly for technical assistance via telephone or email. Contact information is listed at the bottom of this page. When needed, complete repair services are also available.

Single PMC Board

Height 13.5 mm (0.531 in)
Stacking Height 10.0 mm (0.394 in)
Depth 149.0 mm (5.866 in)
Width 74.0 mm (2.913 in)

Board Thickness 2.21 mm (0.08 in)

PMC-VLX/VSX: 3.59oz (0.1016Kg), typical

• **PMC** PCI Local Bus Interface: Four 64-pin female receptacle header (AMP 120527-1 or equivalent). Three of these connectors interface to the PCI bus the fourth connector provide 64 rear I/O connections.

Front Field I/O Connector on PMC module (Samtec QSS-075-01-L-D-A)
 Mating Mezzanine Connector (Samtec QTS-075-01-L-D-A) with 5mm
 stack height or (Samtec QTS-075-02-L-D-A) with 8mm stack height.

Power Requirements	3	PMC Modules				
5V (±5%)	Typical	1400mA (Standard Model) 1800mA (-1M Model)				
	Max.	1680mA (Standard Model) 2160mA (-1M Model)				
3.3V (±5%)	Typical	700mA				
3.5V (±570)	Max.	840mA				
+/-12V (±5%)	Typical	0mA				
17-12 V (±370)	Max.	0mA				

On Board 1.0V Power to Virtex-5 FPGA	Current Rating (Maximum available for the user-programmable FPGA)
1.0V (±5%)	4A Maximum

Operating Temperature: 0 to +70°C. –40°C to +85°C (E Version) **Conduction Cooled PCI mezzanine card:** Complies with ANSI/VITA 20-2001 (R2005). The PMC VLX/VSX, without a faceplate, is fully compatible with a conduction cooled host card.

Relative Humidity: 5-95% Non-Condensing. **Storage Temperature:** -55°C to 125°C.

Non-Isolated: Logic and field commons have a direct electrical connection.

Radiated Field Immunity (RFI): Complies with EN61000-4-3 (3V/m, 80 to 1000MHz AM & 900MHz. keyed) and European Norm EN50082-1 with no register upsets.

Conducted R F Immunity (CRFI): Complies with EN61000-4-6 (3V/rms, 150KHz to 80MHz) and European Norm EN50082-1 with no register upsets.

6.0 SPECIFICATIONS

PHYSICAL

Unit Weight

Connectors

Table 6.1:
Power Requirements for
Example Design. Power will
vary dependent on the
application.

5V Maximum rise time of 100m seconds

ENVIRONMENTAL

SPECIFICATIONS

Surge Immunity: Not required for signal I/O per European Norm EN50082-1.

Electric Fast Transient (EFT) Immunity: Complies with EN61000-4-4 Level 2 (0.5KV at field I/O terminals) and European Norm EN50082-1.

Electrostatic Discharge (ESD) Immunity: Complies with EN61000-4-2 Level 3 (8KV enclosure port air discharge) Level 2 (4KV enclosure port contact discharge).

Radiated Emissions: Meets or exceeds European Norm EN50081-1 for class B equipment. Shielded cable with I/O connections in shielded enclosure are required to meet compliance.

Reliability Prediction

Mean Time Between Failure: 633,360 hours (VLX85), 624,625 (VLX110), 630,959 (VSX95) @ 25°C, Using MIL-HDBK-217F, Notice 2.

FPGA (PMC-VLX85)

Xilinx XC5VLX85T-1FF1136

- 51,840 CLB Flip Flops
- 840,000 Distributed RAM Bits
- 216 18Kbit Block RAMs
- 48 DSP Slices
- 6 Clock Management Tiles

FPGA (PMC-VLX110)

Xilinx XC5VLX110T-1FF1136

- 69,120 CLB Flip Flops
- 1,120,000 Distributed RAM Bits
- 296 18Kbit Block RAMs
- 64 DSP Slices
- 6 Clock Management Tiles

FPGA (PMC-VLX155)

Xilinx XC5VLX155T-1FF1136

- 97,280 CLB Flip Flops
- 1,640,000 Distributed RAM Bits
- 424 18Kbit Block RAMs
- 128 DSP Slices
- 6 Clock Management Tiles

FPGA (PMC-VSX95)

Xilinx XC5VSX95T-1FF1136

- 58,880 CLB Flip Flops
- 1,520,000 Distributed RAM Bits
- 488 18Kbit Block RAMs
- 640 DSP Slices
- 6 Clock Management Tiles

45

The rear I/O P4 PMC connector connects directly to banks 1, 4 and 21 of the FPGA. The bank 1, 4 and 21 Vcco pins are powered by 2.5 volts and thus will support the 2.5 volt IOStandards. Table 6-39 of the Virtex 5 User Guide (available from Xilinx) lists all the supported IOStandards available. The example design defines the rear I/O with 2.5 volt LVDS.

REAR I/O

•	Vcco Supply Voltage	2.5 volt
•	V _{OH} Output High Voltage	1.602 volt
•	V _{OL} Output Low Voltage	0.898 volt

- V_{ODIFF} Differential Output Voltage350m volt typical
- V_{OCM} Output Common Mode Voltage.....1.25 volt typical
- V_{IDIFF} Differential Input Voltage......100m volt minimum
- V_{ICM} Input Common Mode Voltage......0.3 volt min, 1.2 volt typical,

2.2 volt max

See the mezzanine module users manual for front I/O specifications. This PMC module uses the 150 pin Samtec connector part number QSS-075-01-L-D-A which mates with the mezzanine module connector part number QTS-075-02-L-D-A-K

FRONT I/O

Write Disable Jumper: Removal of surface mount resistor R172 disables write to the to the Xilinx FPGA configuration flash device. The location of R172 is shown in diagram 4502-088.

Write Disable Jumper

Board Crystal Oscillator: 133MHz

Frequency Stability: ± 0.0020% or 20ppm

32M x 32-bit Density Double Data Rate 2 SDRAM

Micron MT47H32M16CC

SDRAM Crystal Oscillator: 200MHz

Frequency Stability: ± 0.01% or 100ppm

DDR SDRAM Clock: 133MHz

Data Transfer Rate: 266M longwords(32-bits)/s

256K x 64-bit Integrated Devices Technology IDT70T3519S133BC, Dual Port SRAM

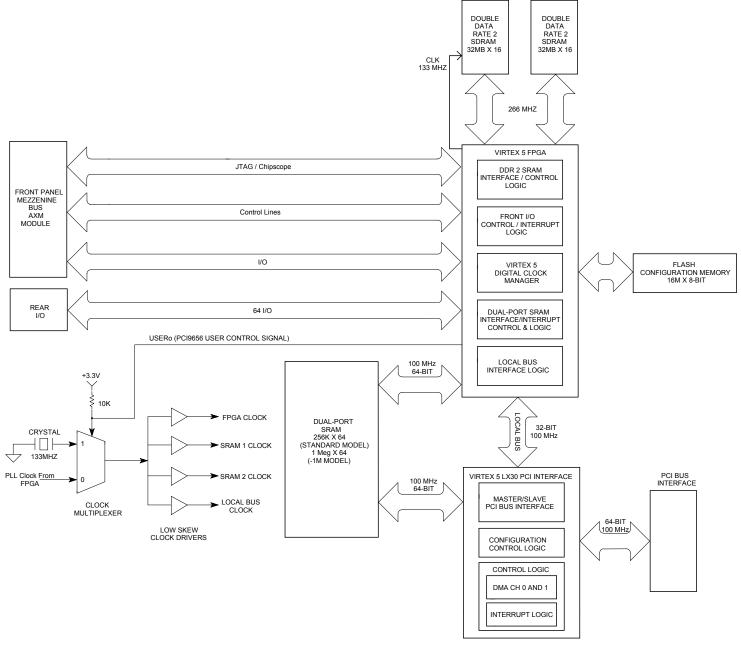
133 Megahertz Speed (standard model)

1Meg x 64-bit Integrated Devices Technology IDT70T3509MS133BP,

133 Megahertz Speed (-1M Model)

16M x 8-bit 128 addressable sectors of which 41 are used for FPGA Flash Memory

Configuration

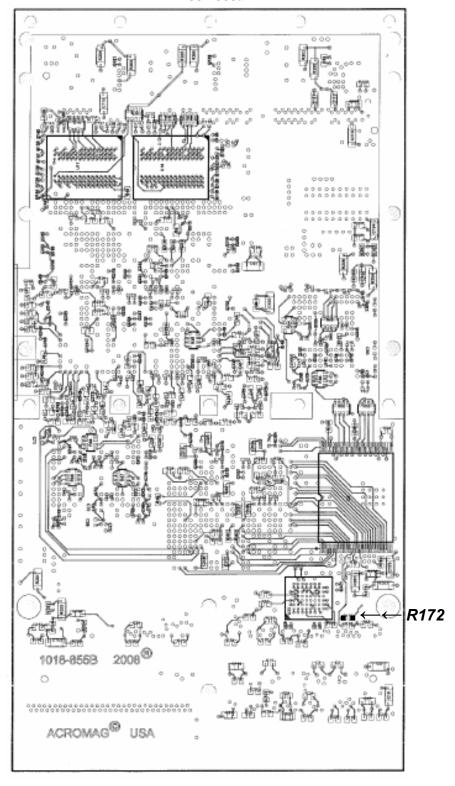

PCI Local Bus Interface

- **PMC Compatibility:** Conforms to PCI Bus Specification, Revision 3.0 and PMC Specification, P1386.1
- **PCI-X bus Master/Target:** The board supports 32-bit or 64-bit PCI-X at 100MHz, 66MHz and 33MHz.
- **4K Memory Space Required:** Base Address Register 0 for access to configuration registers
- **4M Memory Space Required:** Base Address Register 1 for access to Dual Port SRAM. (Standard Model)
- **8M Memory Space Required:** Base Address Register 1 for access to Dual Port SRAM. (-1M Model)
- **4M Memory Space Required:** Base Address Register 2 for access to the user-programmable FPGA (U7).

Signaling: 3.3V Compliant

INTA#: Interrupt A is used to request an interrupt. Source of interrupt can be from the Digital I/O, or DMA Channels.

Certificate of Volatility								
Acromag Model PMC-VLX85(E) PMC-VLX110(E) PMC-VLX155(E) PMC-VSX95(E)) :	Manufacturer: Acromag, Inc. 30765 Wixom Rd Wixom, MI 48393						
Volatile Memory								
Does this product contain Volatile memory (i.e. Memory of whose contents are lost when power is removed) ■ Yes □ No								
Type (SRAM, SDRAM, etc.) SRAM		Size: 256K or 1Med		User Modifiable ■ Yes □ No	Fund Data for F	storage		rocess to Sanitize: ower Down
Type (SRAM, SDRAM, etc.) FPGA based RAM		Size: Varia up to	: ible	User Modifiable ■ Yes	Function: Data storage for FPGA			rocess to Sanitize: ower Down
Type (SRAM, SDRAM, etc.) SDRAM		Size:		User Modifiable ■ Yes □ No	Function: Data storage for FPGA			rocess to Sanitize: ower Down
				Non-Volatile	Memo	ry		
Does this product co ■ Yes □ No		olatile m	nemory ((i.e. Memory of wh	nose co	ntents is retaine	ed w	hen power is removed)
Type(EEPROM, Flash, etc.) Flash		Size: 16Mbyte		User Modifiable ■ Yes □ No	Function: Storage of Code for FPGA		Process to Sanitize: Clear Flash memory by writing a logic 1 to bit-0 of the Flash Erase Chip Register at PCIBAR2 + 24H	
Type(EEPROM, Flash, etc.) Flash		Size: 16Mbit		User Modifiable □ Yes ■ No	Stora	ction: rage of le for PCI Interface		rocess to Sanitize: ot Applicable
Acromag Representative								
Name: Joseph Primeau	Title: Dir. of Sand Marketin	of Sales jprime		l: eau@acromag.com		Office Phone: 248 295-0823	3-	Office Fax: 248-624-9234


BLOCK DIAGRAM 4502-082

J7 EXTERNAL POWER LOCATION 4502-083

In standalone mode, where the card is not plugged into the PCI bus, external power must be provided via the J7 contact holes.

50

PMC VLX/VSX R712 Resistor Location Drawing 4502-088a

