

USB Programmable, DIN Rail Mount Thin Transmitter

Model TT336-0700 4-Wire Transmitter, DC Current or Low Voltage Input Universal Current & Voltage Output

USER'S MANUAL

ACROMAG INCORPORATED 30765 South Wixom Road Wixom, MI 48393-2417 U.S.A. Tel: (248) 295-0880 Fax: (248) 624-9234 email: sales@acromag.com

Copyright 2018, Acromag, Inc., Printed in the USA. Data and specifications are subject to change without notice.

8500937G

Table of Contents

GETTING STARTED

DESCRIPTION4
Key Features4
Application4
Mechanical Dimensions5
DIN Rail Mounting & Removal5
ELECTRICAL CONNECTIONS
SENSOR INPUT CONNECTIONS
Output Connections8
Power Connections9
Optional Bus Power Connections10
Earth Ground Connections11
USB Connections12
CONFIGURATION SOFTWARE
Quick Overview – Android13
Quick Overview – Windows14
OPERATION STEP-BY-STEP16
Connections16
Configuration17
Calibration (Optional)20
BLOCK DIAGRAM
How It Works22
TROUBLESHOOTING
Diagnostics Table23
Service & Repair Assistance24
ACCESSORIES
Software Interface Package25
USB Isolator25
USB A-B Cable25
USB A-mini B Cable25
USB OTG Cable26
DIN Rail Bus Connector Kit26
End Stops26
SPECIFICATIONS
Model Number27
Input27

Output	
USB Interface	
Power	
Enclosure & Physical	
Environmental	
Agency Approvals	
Reliability Prediction	
Configuration Controls	
REVISION HISTORY	

All trademarks are the property of their respective owners.

IMPORTANT SAFETY CONSIDERATIONS

You must consider the possible negative effects of power, wiring, component, sensor, or software failure in the design of any type of control or monitoring system. This is very important where property loss or human life is involved. It is important that you perform satisfactory overall system design and it is agreed between you and Acromag, that this is your responsibility.

The information of this manual may change without notice. Acromag makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Further, Acromag assumes no responsibility for any errors that may appear in this manual and makes no commitment to update, or keep current, the information contained in this manual. No part of this manual may be copied or reproduced in any form without the prior written consent of Acromag, Inc.

GETTING STARTED

DESCRIPTION

Symbols on equipment:

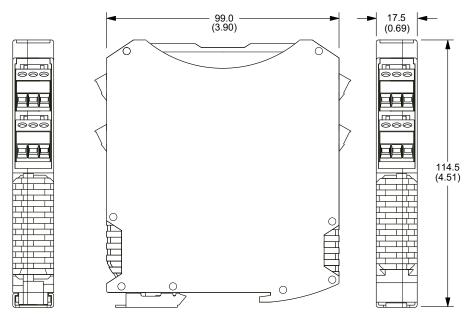
Means "Refer to User's Manual (this manual) for additional information". The TT336-0700 is an ANSI/ISA Type IV transmitter designed to interface with DC Current (0-20mA/4-20mA/0-11.17mA/ \pm 1mA), or low level DC Voltage (\pm 0.5V/0-500mV) sensors, isolate the input signal, and modulate a DC current or DC voltage signal at its output. This unit is configured and calibrated using configuration software and a USB connection to Windows-based PC's (Windows XP and later versions only). The unit provides an adjustable input range, a selectable output range for voltage or current, three-way isolation, and a variable input filter.

Key Features

- Digitally configured and calibrated w/ Windows software via USB.
- Thin 17.5mm wide enclosure for high-density DIN-rail mounting.
- High measurement accuracy and linearity with 16-bit conversion.
- Adjustable input range and selectable output ranges.
- DC Current Input for 0-20mA, 4-20mA, 0-11.17mA, and ±1mA.
- DC Voltage Input for ±0.5V and 0-500mV.
- Universal Output for ±10V, ±5V, 0-10V, 0-5V, ±20mA, 0-20mA, and 4-20mA.
- Output drives DC current or DC voltage without rewiring.
- Normal or Reverse Acting output.
- Variable Digital Input Filter adjustment.
- Wide-range DC power input from 12-32V.
- Bussed Power and/or Redundant Power Ready.
- Wide ambient temperature operation.
- Thoroughly Tested and Hardened For Harsh Environments.
- CE Approved.
- FCC Conformity Class B.
- UL/cUL Class 1, Division 2 Approved.
- Model TT336-0700 is ATEX/IECEx Certified for Explosive Atmospheres.
 €x II 3 G Ex ec IIC T4 Gc -40°C ≤ Ta ≤ +80°C

DEMKO 15 ATEX 1561X IECEx UL 18.0091X

Application

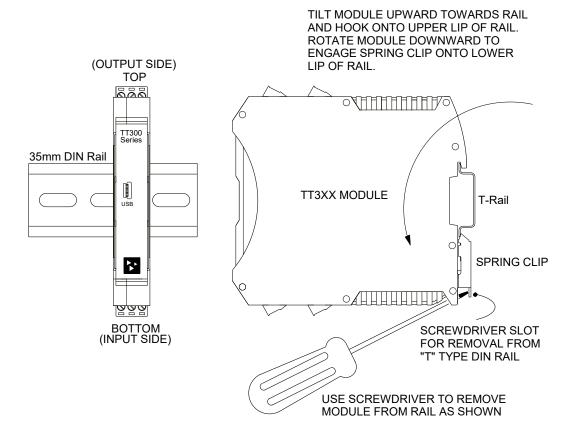

For additional information on these devices and related topics, please visit our web site at www.acromag.com. This transmitter is designed for high-density mounting on T-type DIN rails. Units may be mounted side-by-side on 0.7 inch (17.5mm) centers. It supports 12-32V DC power via terminals on the unit, or optionally via power wired to its DIN-rail bus connector. This model has separate input terminals for current and voltage and isolates the input signal, allowing it to mate with grounded or non-grounded sensors.

The universal output signal is isolated from the input and power and will drive current or voltage signals for the ranges ± 20 mA, 0-20mA, 4-20mA, ± 10 V, ± 5 V, 0-10V, and 0-5V. The output of this transmitter is very unique in that it can drive

Mechanical Dimensions

Units may be mounted to 35mm "T" type DIN rail (35mm, type EN50022), and side-by-side on 0.7inch centers.

WARNING: IEC Safety Standards may require that this device be mounted within an approved metal enclosure or sub-system, particularly for applications with exposure to voltages greater than or equal to 75VDC or 50VAC. either current or voltage under digital control using the same two output terminals (only the load must be adjusted).



DIMENSIONS ARE IN MILLIMETERS (INCHES)

DIN Rail Mounting & Removal

Refer to the following figure for attaching and removing a unit from the DIN rail. A spring loaded DIN clip is located on the input side bottom. The opposite rounded edge at the bottom of the output side allows you to tilt the unit upward to lift it from the rail while prying the spring clip back with a screwdriver. To attach the module to T-type DIN rail, angle the top of the unit towards the rail and place the top groove of the module over the upper lip of the DIN rail. Firmly push the unit downward towards the rail until it snaps into place. To remove it from the DIN rail, first separate the input terminal blocks from the bottom side of the module to create a clearance to the DIN mounting area. You can use a screwdriver to pry the pluggable terminals out of their sockets. Next, while holding the module in place from above, insert a screwdriver into the lower path of the bottom of the module to the DIN rail clip and use it as a lever to force the DIN rail spring clip down while pulling the bottom of the module outward until it disengages from the rail. Then simply lift it from the rail.

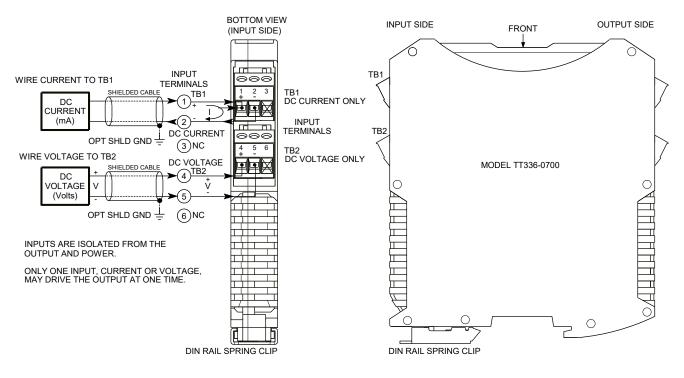
TT3XX MODULE DIN RAIL MOUNTING AND REMOVAL

ELECTRICAL CONNECTIONS

WARNING – EXPLOSION HAZARD – Do not disconnect equipment unless power has been removed or the area is known to be non-hazardous.

WARNING – EXPLOSION HAZARD – Substitution of any components may impair suitability for Class I, Division 2.

WARNING – EXPLOSION HAZARD – The area must be known to be non-hazardous before servicing/replacing the unit and before installing.

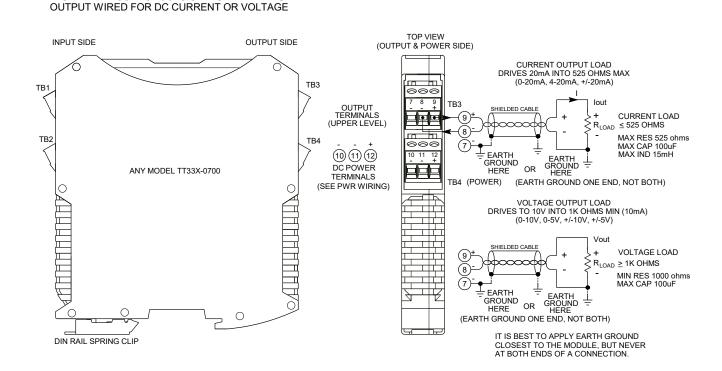

Wire terminals can accommodate 14–26 AWG (2.08–0.13mm²) solid or stranded wire with a minimum temperature rating of 85°C. Input wiring may be shielded or unshielded type. Ideally, output wires should be twisted pair, or shielded twisted pair. Terminals are pluggable and can be removed from their sockets by prying outward from the top with a flat-head screwdriver blade. This model allows current input to be wired to TB1, and voltage input wired to TB2, but only one input may drive the output. Strip back wire insulation 0.25-inch on each lead and insert the wire ends into the cage clamp connector of the terminal block. Use a screwdriver to tighten the screw by turning it in a clockwise direction to secure the wire (0.5-0.6Nm torque). Since common mode voltages can exist on signal wiring, adequate wire insulation should be used and proper wiring practices followed. As a rule, output wires are normally separated from input wiring for safety, as well as for low noise pickup.

Sensor Input Connections

Sensor wires are wired directly to transmitter input terminals at the bottom of the module (the spring-loaded DIN clip side), as shown in the connection drawing below. Observe proper polarity when making input connections.

- The Transmitter input signal is isolated from the output and power.
- DC Current is wired to the upper terminal block (TB1).
- DC Voltage is wired to the lower terminal block (TB2).
- Inputs are polarized "+" and "-". The positive input is on the left and labeled "+", and the negative input is to its right. Observe proper polarity. See connection figure below.
- Only one input, current or voltage, may drive the output at one time.

MODEL TT336-0700 INPUT SENSOR WIRING


Output Connections

(DC Current or Voltage)

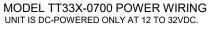
MODEL TT33X-0700 OUTPUT WIRING

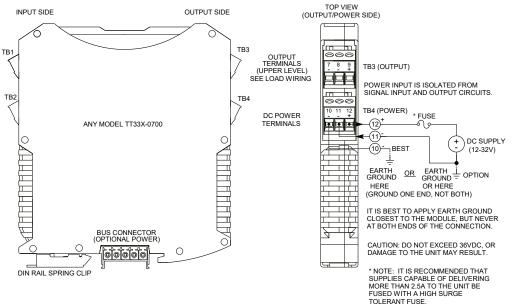
This transmitter is an ANSI/ISA Type 4 in which the unit's power is separate from the input and output circuits.

- Output connections are polarized. Current is output from Output+ and is returned to Output-. Voltage output is positive at Output+.
- Variations in load resistance have negligible effect on output accuracy, as long as the load limits are respected with respect to output type (see below).

Observe proper polarity. Note that twisted-pair wiring is often used to connect the longest distance between the field transmitter's output and the remote load as shown above. Additionally, shielded twisted pair wiring is recommended for best results. An output connection to earth ground will help protect the circuit from damage in noisy environments.

WARNING: For compliance to applicable safety and performance standards, the use of twisted pair output wiring is recommended. Failure to adhere to sound wiring and grounding practices as instructed may compromise safety, performance, and possibly damage the unit.


Output Connections... (DC Current or Voltage)


TIP - Ripple & Noise: Additional filtering placed at the load can help reduce 60Hz/120Hz ripple often present in industrial applications. For large 60Hz supply ripple, connect an external 1uF or larger capacitor directly across the load to reduce excessive ripple. For sensitive applications with high-speed acquisition at the load, high frequency noise may be reduced significantly by placing a 0.1uF capacitor directly across the load, as close to the load as possible.

Power Connections

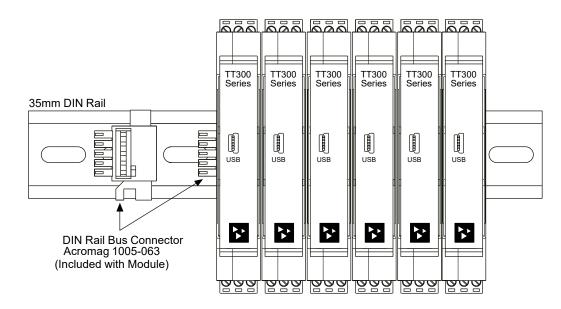
The unit is powered from 12-32V DC (36V DC peak) by connecting power as shown below. This transmitter can be optionally powered (or redundantly powered) via the DIN rail bus when coupled to the DIN rail bus connector (Acromag Model 1005-063) and a bus terminal block (Acromag 1005-220 or 1005-221). This optional method can also allow several modules to share a single power supply without wiring to each individually.

- Power connections are isolated from the input and output. The supply voltage should be from 12-32V DC. This voltage must never exceed 36V DC peak, or damage to the unit may result.
- Variations in power supply voltage between the minimum required and 32V maximum, has negligible effect on transmitter accuracy.
- <u>Note the placement of earth ground at power</u>. The power cable shield and DC- should ideally be grounded closest to the module. The input and output circuit commons are capacitively coupled to earth ground at DC- through high-voltage isolation capacitors, offering some protection if their circuits happen to float (not recommended).

Power Connections...

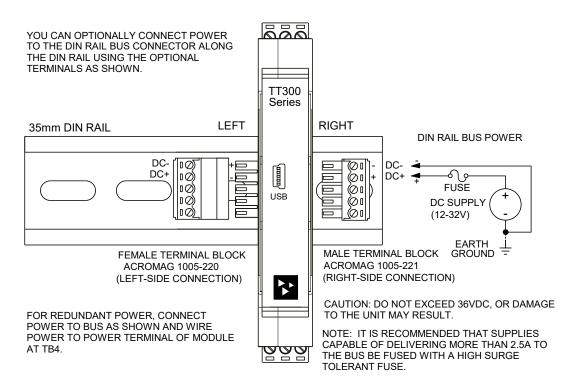
CAUTION: Risk of Electric Shock – More than one disconnect switch may be required to de-energize this equipment before servicing.

IMPORTANT – External Fuse: If unit is powered from a supply capable of delivering more than 2.5A to the unit, it is recommended that this current be limited via a high surge tolerant fuse rated for a maximum current of 2.5A or less (for example, see Bel Fuse MJS or RJS fuse types).


Optional Bus Power Connections

Power is normally connected to the TB4 power terminals of the unit as shown on the previous page. However, this transmitter is equipped to be optionally or redundantly powered via its DIN rail bus connector provided (Acromag 1005-063), when also mated to an optional plug-in terminal block (Acromag 1005-220 or 1005-221, depending on side of entry). Power input via the bus connector terminal is diode-coupled to the same point in the circuit as unit power connected at power terminal TB4. You can elect to power multiple units by snapping them together along the DIN rail bus, then using a mating terminal block (select a Left or Right side connector, see figure of next page). While the intent of the bus power connector is to allow several units to conveniently share a single supply, you may also use the bus power connector to redundantly power units (with local power also applied at TB4), allowing a backup supply to maintain power to the unit(s) should the main supply at TB4 fail.

Your unit comes equipped with the bus connector 1005-063 shown below. This connector allows units to snap together, side-by-side, along the DIN rail and share these connections. But to complete connection to power, you will additionally need an optional plug-in bus terminal block (Acromag 1005-220 for left-side, or 1005-221 for right-side connections).



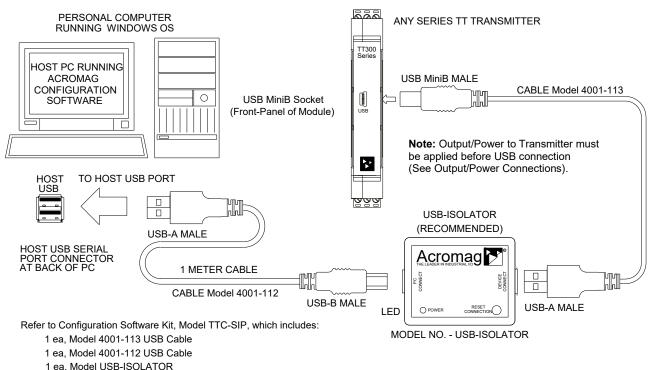
Important – End Stops: If this module uses the optionally powered (or redundantly powered) via the DIN rail bus for hazardous location installations (Class I, Division 2 or ATEX/IECEx Zone 2) it must use two end stops (Acromag 1027-222) to secure the terminal block and module (not shown).

Optional Bus Power Connections...

The figure below shows how to wire power to the optional bus terminal block when mated to the bus connector. Note that power is wired to the rightmost bus terminals on the right, or the left-most terminals on the left. Observe proper polarity.

Earth Ground Connections

The unit housing is plastic and does not require an earth ground connection. It does include a special connector that makes functional contact with the DIN rail if the DIN rail is grounded, but you should not rely on this connection for earth ground. The internal input, output, and power circuits are electrically isolated from each other, allowing these circuits to be individually earth grounded as indicated. If the transmitter is mounted in a metal housing, a ground wire connection is typically required for the enclosure and you should connect that metal enclosure's ground terminal (green screw) to earth ground using suitable wire per applicable codes. See the Electrical Connections Drawings for Input, Output, and Power, and note the position of earth ground. Earth ground should be applied at the input power minus terminal (DC-). The input and output circuit returns are additionally shunted to earth ground applied at the power minus terminal via internal isolation capacitors.


- Avoid inadvertent connections to earth ground at other points than those indicated, as this could drive ground loops and negatively affect operation.
- A USB isolator is recommended when configuring or calibrating a unit to avoid the ground loop that occurs if your input is also earth grounded (A PC commonly earth grounds its USB port and this makes contact with both the USB signal and shield ground which is held in common to the input circuit ground of this transmitter).

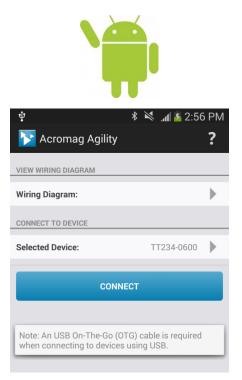
USB Connections

This transmitter is configured and calibrated via configuration software that runs on a Windows-based PC connected to the unit via USB (Windows XP or later required). Refer to the following drawing to connect your PC or laptop to the transmitter for the purpose of reconfiguration and calibration using this software.

TT SERIES USB TRANSMITTER CONNECTIONS

USED FOR CONFIGURATION AND CALIBRATION OF THE TRANSMITTER IN A SAFE OR ORDINARY LOCATION

1 ea, Configuration Software CDROM 5040-944



WARNING: The intent of mating USB with this transmitter is so that it can be conveniently setup and calibrated in a safe area, then installed in the field which may be in a hazardous area. Do not attempt to connect a PC or laptop to this unit while installed in a hazardous area, as USB energy levels could ignite explosive gases or particles in the air. USB Signal Isolation is recommended and required when connected to a grounded input – Input and USB connections are isolated from the output and power of this model. USB Isolation is recommended for safety and noise suppression, but required when the input signal happens to be grounded. You may use Acromag model USB-ISOLATOR to isolate your USB port, or you can optionally use another USB signal isolator that supports USB Full Speed operation (12Mbps).

IMPORTANT: USB logic signals to the transmitter are referenced to the potential of the transmitter's input circuit ground. This ground is held in common with USB ground and USB cable shield ground. Thus, an isolator is required when the input signal is grounded and the unit is connected to the USB port of an earth-grounded PC. You could avoid the use of an isolator if a battery powered laptop was instead used to connect to the transmitter, and the laptop had no other earth ground connection, either directly or indirectly via a connected peripheral.

CONFIGURATION SOFTWARE

Quick Overview – Android

	₩` (X : *	2:1	7 PM
< 下 TT236-060	0	?	¢
CONFIGURATION	CALIBRATION		IAGNOS [.] ENTER
INPUT OPTIONS			
Input Type:	4–20 m	illiamps	
Input Filtering:		High	
I/O SCALING			
4.00	mA = 4mA Out		
20.00	mA = 20mA Out		
Device status: Conf	figuration Successf	ul	

This transmitter can be configured and calibrated via the Acromag Agility™ Config Tool App. This software can be downloaded free of charge from the Google Play store at <u>play.google.com</u>. To connect to this transmitter, a USB OTG (On-The-Go) cable (Acromag 5028-565) and USB A to Mini-B cable (Acromag 4001-113) are required. This app is compatible with Android devices using Ice Cream Sandwich (4.0) or later.

The initial connection screen of the app is shown at left. Once a device is connected, the main portion of the app will launch. The screen is divided into three tabs for this model. A short description of each tab follows.

Connection Screen Setup - DEVICE SELECT (First Connect to Unit Here)

- Select from connected transmitters by tapping the **[Select Device]** button. This will bring up a list of attached devices. Select the desired device and tap the Connect button to open the device.
- To view wiring diagrams of a particular transmitter, tap the [Wiring Diagram] button and select the desired model. Swipe left or right to view more diagrams. No connection is required to view the diagrams.
- Android requires user permission to access external hardware. If the Device List displays "No Device Permission", select this device and when prompted to give permission to access the USB device, tap **[OK]**.

Configuration Tab – CONFIGURE I/O

- Once connected, the app will automatically read your transmitter and display its current configuration.
- Changing any option on this page will send the changes to the transmitter instantly. The device status at the bottom of the page will report if the changes were sent successfully.

Calibration Tab - (Calibrate the Input and/or Output if Needed)

- On screen instruction will guide the setup to properly calibrate the transmitter. After completing instructions, tap the **[Calibrate]** button.
- The device status at the bottom of the page will report if the calibration was sent successfully.

Diagnostic Center Tab – (Verify Input operation)

- Select the polling indicator by tapping the **[Indicator]** button.
- Start polling by tapping the [Start Polling] button.

Utility Page – (Reboot or Restore Settings)

- Tap the [Gear] in the Action bar to access the Utility Page.
- You can tap the **[Restore/Reset Factory]** utility buttons to get out of trouble if you ever misconfigure or miscalibrate a transmitter.

Scriec status. Sonngaration subscessia

<u>Quick Overview – Windows</u>

Click "Open" to connect to the TT236-0600 and your screen will look similar to the following:

Communication Setup	I/O Config/Test	Calibration
	DEVICE SELECT	
	Device:	TT336-0700-000001A 🗸
		Close
	Model:	TT336-0700
	Serial Number:	000001A
	Manufacturer:	Acromag Inc
	Status:	Device opened successfully

Communication	Setup I/O Config/Test Calbration	
0	CONFIGURE 1/O	
	Get I/O Config	
	Input Range: 4-20mA 🗸	
	Input Filtering: High (1200mS) V Output Range: ±20mA V	
	Status: No Error	
	Scatus: No Error	
	I/O Scaling	
	4.998 mA = -20mA Out	
	20.000 mA = 20mA Out	
	Send I/O Config	
	Send 1/0 Coning	
ſ	IEST I/O	
	Start Poling	
	Click "Start Polling" to poll the input and display its value. The LED next to the button will flash when polling is active.	
	Click "Stop Polling" to discontinue polling the input.	

This transmitter can be configured and calibrated via its Configuration Software and a USB connection to your PC or laptop. The configuration software can be downloaded free of charge from our web site at <u>www.acromag.com</u>. This software is also included on a CDROM bundled with the Configuration Kit TTC-SIP (see Accessories section). For this model, look for the program TT336Config.exe. This software is compatible with XP or later versions of the Windows operating system.

The initial configuration software screen for this model is shown at left. Configuration information is divided across three pages (tabs) as follows: Communication Setup, I/O Config/Test, and Calibration. A short description of each of these configuration pages follows:

Communication Setup (First Connect to Unit Here)

- Select from connected transmitters and Open/Close communication with them.
- Display the Model, Serial Number, and Manufacturer of the connected transmitter and report the status of communication with it.

This section is used to select a connected transmitter, and open/close communication with it. Device connection Status is also indicated here, along with the connected transmitter's ID info (Product Name/serial, Manufacturer, & Serial Number).

I/O Config/Test (Configure and/or Test the Unit Here)

- You can click the **[Get I/O Config]** button to retrieve the I/O configuration of the currently connected transmitter.
- Select the Input Range. You can select current ranges ±20mA, 0-20mA, 4-20mA, 0-11.17mA, or ±1mA for current wired to TB1, or voltage ranges ±0.5V and 0-500mV for voltage wired to TB2.
- Set the level of digital filtering to High, Medium, Low, or None (No digital filter). The corresponding I/O response time varies with filter selection and is indicated in parenthesis next to your selection.
- Set the Output Range to ±10V, ±5V, 0-5V, 0-10V, ±20mA, 0-20mA, or 4-20mA.
- View the unit's configuration message status in the Status field.
- Use the I/O Scaling fields to specify the specific input range endpoints that are to correspond to the output range zero and full-scale endpoints.
- Last, after making I/O changes, send your settings to the unit by clicking the [Send I/O Config] button and follow the on-screen prompts.

For detailed configuration and calibration procedures, see the Operation Step-By-Step section of the Technical Reference on page 16 of this manual.

Quick Overview - Windows..

HELP – You can press F1 for Help on a selected or highlighted field or control. You can also click the [?] button in the upper-right hand corner of the screen and then click again to point to a field or control to get a Help message pertaining to the item you pointed to.

T336 Configuration Software	
Communication Setup I/O Config/Test Calibration	
CONFIGURE I/O	
Get I/O Config	
Input Range: 4-20mA 🗸	
Input Filtering: High (1200mS) V	
Output Range: ±20mA 💌	
Status: No Error	
I/O Scaling	
4.998 mA = -201	nA Out
20.000 mA = 20m	A Out
Send I/O Config	
Send the county	
TEST L/O	
Start Poling	
Cirk "Start Polico" to coll the input and disp	av its value. The
Click "Start Poling" to poll the input and displ LED next to the button will flash when poling	
Click "Stop Polling" to discontinue polling the	nput.

TT336 Configuration Software	?
Communication Setup 1/O Config/Test Calibration	
CALIBRATION Post Page Cal Instructors Zero Al Scale Output Couper Cal Instructors Couper Cal Instructors Couper Cal Instructors Zero Al Scale	
FACTORY SETTINGS Factory Calculation Collaboration Status	Ā

Test I/O (Optional, Verify Unit Operation Here)

After making I/O configuration changes, you can use the TEST I/O controls to start/stop polling the input channel to check your input readings.

• Click the **[Start Polling]** button to periodically read your input channel and validate its operation. Click **[Stop Polling]** to stop polling the input channel. Note the simulated red lamp to the left of the button flashes slowly when the software is polling the input channel. Stop polling before sending a configuration or selecting another page.

CALIBRATION (Calibrate the Input and/or Output if Needed)

This unit has already been factory calibrated. If you encounter excessive error, you can choose to click the Calibration tab to display the Calibration control page shown in the second screen at left.

To calibrate the Input or Output stage of this model, simply click the respective "Cal Instructions" button and follow the on-screen prompts.

Input...

Before attempting calibration, first set the Input Range to calibrate from the I/O Config/Test page and be sure to click the **[Send I/O Config]** button. On the Calibration page, click the **[Input Cal Instructions]** button to begin input calibration.

When you click the **[Zero]** or **[Full Scale]** buttons of the Input Calibration section, you will be prompted to apply a specific current level at TB1, or voltage level at TB2, according to your selected input range. Once you have applied this signal to the correct input terminals, click the **[OK]** button of the prompt and follow the on-screen instructions to complete input calibration.

Output...

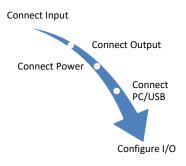
Click the **[Output Cal Instructions]** button to begin output calibration. You will be prompted to adjust the input signal as required to drive the output to its precise output range zero or full-scale level. Then once the output is set to zero or full-scale, you simply click the corresponding **[Zero]** or **[Full-Scale]** button of the CALIBRATION - Output section to set the output range zero or full-scale endpoint.

Factory Settings (Use Only In Case of Trouble or for Sanitation Purposes)

- Restore a transmitter to its original factory calibration.
- Restore a transmitter to its initial factory configuration.

You can click the "Restore Factory" buttons if you ever misconfigure or miscalibrate a transmitter in such a way that its operation appears erratic, or for sanitation purposes when decommissioning a module.

Calibration Status (Bottom of Screen)


• Displays communication status messages for the calibration process.

The CALIBRATION STATUS message bar at the bottom of the screen will display status messages relative to calibration.

TECHNICAL REFERENCE OPERATION STEP-BY-STEP

Connections

This section will walk you through the Connection-Configuration-Calibration process step-by-step. But before you attempt to reconfigure or recalibrate this transmitter, please make the following electrical connections

<u>Note:</u> Your input source, output meter, and load resistor (current outputs) must be accurate beyond the unit specifications, or better than $\pm 0.1\%$. A good rule of thumb is that your equipment accuracy should be four times better than the rated accuracy you are trying to achieve with this transmitter.

Calibration Connections:

- 1. **Connect Input:** Connect a precision current source to the TB1 input terminals, or a precision voltage source to the TB2 input terminals, according to your desired input range. Your signal source must be adjustable to the nominal input range zero and full-scale levels. Observe proper polarity. For voltage input, use a voltage source with an output impedance of 100Ω or less.
- 2. Connect Output: Wire an output load to the unit appropriate for either current or voltage, as required by your application. You will need to measure the output current or voltage accurately in order to calibrate the unit. You could connect a current meter in series with the load to read the output current directly, or a digital volt meter in parallel with the load to measure output voltage. Alternatively, you could simply connect a voltmeter across a precision load resistor to accurately read output current as a function of the IR voltage drop produced in the load resistor (recommended for current outputs).
- 3. **Connect Power:** Wire 12-32VDC power to the unit at TB4 as shown in the Electrical Connections section. Optionally, you may wire power to the bus terminal as shown in the optional power connections drawing. But in either case, never exceed 36VDC peak, or damage to the unit may result.

Apply power to the transmitter <u>before</u> connecting to USB. You will not be able to configure or calibrate the unit without power also applied, as this device does not use USB power.

4. **Connect to PC via USB:** Connect the transmitter to the PC using the USB isolator and cables provided in Configuration Kit TTC-SIP (refer to Electrical Connections section). You may omit the isolator if you are using a battery powered laptop PC to connect to the unit, or if your input source is not already grounded.

Now that you have made your connections and applied power, you can execute the TT336Config.exe software to begin configuration of your unit (software is compatible with XP or later versions of the Windows operating system).

Configuration

T336 Configuratio			
Communication Setup	I/O Config/Test	Calibration	
	DEVICE SELECT		
	Device:	v	
		Open	
	Model:		
	Serial Number:		
	Manufacturer:		
	Status:		

Note that you should already have power connected to the transmitter at this point. This model does not utilize USB power and you will not be able to configure, calibrate, or test the unit without power applied.

After executing the Acromag Configuration software for this model, the screen shown at left will appear, <u>if you have not already</u> <u>connected to your transmitter via USB</u> (note fields are blank under these conditions).

Connect your PC to the unit via USB, and the unit's model-serial information will appear in the Device field as shown in the second screen at left.

If you happen to be connected to more than one unit via a USB hub, you can use the Device scroll field to select another unit, using the serial information suffix of the Device Model number to discern one unit from another.

Communication Setup	I/O Config/Test	Calibration	
	DEVICE SELECT -		
	Device:	TT336-0700-1234567	
		Open	
	Model:		
	Serial Number:		
	Manufacturer:		
	Status:		

Once you have selected a device, click the **[Open]** button to open communication with the unit.

After clicking [Open], the selected unit's Model, Serial Number, Manufacturer, and connection status message will be displayed as shown in the first screen on the next page.

TIP: Always Close a connection with one device before selecting another device.

Configuration...

Communication Setup	I/O Config/Test	Calibration	
	DEVICE SELECT		
	Device:	TT336-0700-1234567	
		Close	
	Model:	TT336-0700	
	Serial Number:	1234567	
	Manufacturer:	Acromag Inc	
	Status:	Device opened successfully	

Communication Setup	I/O Config/Test Calibration	
CONFIG	SURE I/O	
	Get I/O Config	
Inp	out Range: 4-20mA 🗸	
	but Filtering: High (1200ms)	
Out	tput Range: ±20mA 💙	
Sta	atus: No Error	
[I,	I/O Scaling	
	4.998 mA = -20mA Out	
	20.000 mA = 20mA Out	
	Send I/O Config	
TEST I/O		
•	Start Polling	
c	lick "Start Polling" to poll the input and display its value. The	
	ED next to the button will flash when polling is active. Lick "Stop Polling" to discontinue polling the input.	
0	and stop rowing to asconance pointing the input.	

After you connect USB and "Open" communications with a unit, the Status field indicates "Device opened successfully" as shown in the screen at left.

At this point, you can click the **"I/O Config/Test"** tab to begin configuring the unit, or to optionally test its operation. The I/O Config/Test screen is the second screen shown at the bottom left.

When you click the "I/O Config/Test" tab, the software retrieves the unit's current configuration and displays it similar to the second screen shown at left.

IMPORTANT: Note that this model has two input points. The first input is TB1 (upper terminal block of input side) and is intended for DC current only. The second input is at TB2 (the lower terminal block of the input side) and is intended for DC voltage only. Your selected input range will determine which terminal block you wire your input to. Only one input may drive the output at one time.

If you are connected to a module, the initial I/O Config screen represents the current configuration of the connected module before making changes. Otherwise, if you have loaded the configuration from a saved file, or if you have made changes to any fields, you can click the **[Get I/O Config]** button at the top of the screen to retrieve the connected module's current configuration.

Note that if you make any changes to the selections indicated, the only way to preserve your changes is to write them to the device by clicking the **[Send I/O Config]** button after completing your selections, or to save them to a file by clicking "<u>File</u>" in the upper left-hand corner of the screen.

Select the Input Range...

Input Range refers to the particular input range. DC current inputs are wired to TB1 and apply to ranges ± 20 mA, 0-20mA, 4-20mA, 0-11.17mA, and ± 1 mA. DC voltage ranges are wired to TB2 and apply to nominal ranges ± 0.5 V or 0-500mV.

Note that any input range you pick can be rescaled to the output, allowing you to use only a portion of a selected input range to drive a current or voltage output, as desired. However, resolution will decrease proportionally as you rescale the input signal smaller than the nominal range. Each halving of the nominal range will reduce resolution by 1 bit. This can also magnify error, especially noticeable for very small input ranges which degrade the signal-tonoise ratio of the input and resolution of the analog-to-digital conversion.

Configuration...

FT336 Configuratio	n Software	?
Communication Setup	I/O Config/Test Calibration	
Ing	URE 1/0 Get 1/0 Config ut Range: 4-20mA v ut Filtering: High (1200ms) v tput Range: ±20mA v	
	tus: No Error /O Scaling 4.998 mA = -20mA Out 20.000 mA = 20mA Out	
	Send I/O Config	
L	lisk "Start Polling" to poll the input and display its value. The ED next to the button will fliash when polling is active. Lick "Stop Polling" to discontinue polling the input.	

HELP – You can press **[F1]** for Help on a selected or highlighted field or control. You can also click the **[?]** button in the upper-right hand corner of the screen and click to point to a field or control to get a Help message pertaining to the item you pointed to.

Select the Input Filtering...

You may select the level of digital filtering to apply to the input channel as Low, Medium, High, or None (No digital filtering). The respective I/O response times are indicated in parenthesis next to your filter selection. Note that higher filter levels result in lower average noise, but with slower I/O response times.

Select the Output Range ...

The output terminals of this unit are universal and may drive DC current or voltage in the ranges ± 20 mA, 0-20mA, 4-20mA, ± 10 V, ± 5 V, 0-10V, and 0-5V. Voltage outputs may drive 1K Ω or higher loads, while current outputs may drive 525 Ω or less.

Select the Input/Output Scaling...

You may rescale selected input ranges to use only a portion of the input range to drive the output if desired. Be careful not to reduce the input range too much, as resolution will be proportionally diminished and noise/error magnified.

In the corresponding I/O Scaling field, set the input signal minimum/zero value to correspond to the output range zero value (i.e. -20mA, 0mA, 4mA, -5V, -10V, or 0V, depending on the output range selected). Also set the input signal maximum/full-scale value to correspond to the output range full-scale (i.e. 20mA, 10V, or 5V, depending on output range selected). You can optionally swap input levels to configure a reverse acting output response if desired. Note that approximately 5% of under and over-range is built into each output range selection.

If the scaled input zero and full-scale points are chosen too close together, performance will be degraded.

Once you have made your configuration selections, click the **[Send I/O Config]** button to write them to the module. You can read the Status of your sent message to the unit in the "Status" field. Alternately, you could click "**<u>File</u>**" in the upper left hand corner to save the settings to a file on your PC, for later reference.

Calibration (Optional)

ommunicati	on Setup I/O Config/Test Calibration
	CONFIGURE I/O
	Get I/O Config
	Input Range: 4-20mA 👻
	Input Filtering: High (1200mS)
	Output Range: #20mA V
	Status: No Error
	I/O Scaing
	4.996 mA = -20mA Out
	20.000 mA = 20mA Out
	Send I/O Config
	Start Poling
	Click "Start Poling" to poll the input and display its value. The LED next to the button will flash when poling is active.
	Click "Stop Polling" to discontinue polling the input.
50 6011	iguration Software
ommunicat	ion Setup I/O Config/Test Calibration
	CALIBRATION
	Input
	Input
	Input Cal Instructions
	Input Input Cal Instructions Zero Full Scale
	Trput Trput Cal Instructions Zero Full Scale Output
	Input Input Cal Instructions Zero Full Scale
	Trput Trput Cal Instructions Zero Full Scale Output
	Trput Cal Instructions Zero Full Scale Output Cal Instructions Output Cal Instructions
	Input Cal Instructions Zero Full Scale
	Input Cal Instructions Zero Full Scale Output Cal Instructions Zero Full Scale
	Input Cal Instructions Zero Full Scale
	Input Cal Instructions Zero Full Scale Output Cal Instructions Zero Full Scale
	Input Cal Instructions Zero Full Scale Output Cal Instructions Zero Full Scale
	Input Cal Instructions Zero Full Scale Output Cal Instructions Zero Full Scale
	Input Cal Instructions Zero Full Scale Output Cal Instructions Zero Full Scale
	Input Cal Instructions Zero Full Scale Output Cal Instructions Zero Full Scale
	Input Cal Instructions Zero Full Scale Output Cal Instructions Zero Full Scale

CAUTION-Input Calibration: Driving inputs outside of the nominal input range of the unit will not be acceptable for calibration of zero or full-scale. Since input levels cannot be validated during calibration, incorrect signal levels will produce an undesired output response.

At this point, you can test the module's operation by clicking on the **[Start Polling]** button of the TEST I/O section of the I/O Config/Test page to trigger the software to periodically read the input and display its value in the field to the right of the polling toggle button. Note the simulated lamp next to the button flashes slowly each time it samples the input. Click **[Stop Polling]** to stop polling the input before moving onto the next page.

Once you've configured your unit, you are ready to install it in the field, as the unit has already been factory calibrated. If you later encounter error that is out of specification, you can choose to click the **Calibration** tab to display the Calibration control page shown at left.

IMPORTANT: This unit has already had its input and output channels factory calibrated with a high level of precision. If you attempt to recalibrate the input or output channel, you could degrade its performance if it is not done properly, or it is done using lower grade equipment. Consider your decision to recalibrate carefully.

Calibration of this model is a simple two-part process initiated by simply clicking the Input Cal or Output Cal **"Instructions"** button to begin and then follow the on-screen prompts to continue.

CALIBRATION – Input

Before attempting to recalibrate the input channel, first set the Input Range to calibrate on the "I/O Config/Test" page. Additionally, make sure you write your selection to the unit by clicking the **[Send I/O Config]** button. Wire your input source to TB1 if DC current input, or TB2 if DC voltage input.

After setting your input range, Click the **[Input Cal Instructions]** button to begin input calibration and enable the Input [Zero] and [Full-Scale] buttons.

Click the Input **[Zero]** button and you will be prompted to input the minimum value of your selected input range at the appropriate input channel. If you are using DC Current, this will be -20mA, 0mA, 4mA, or -1mA at TB1, depending on the Input Range selected. If you are using DC voltage, this will be -0.5V or 0V at TB2. Note that calibration does not use your scaled range zero, but the zero of the nominal input range. Once you input the zero precisely, click the **[OK]** button and follow the on-screen prompt to calibrate zero.

Click the Input **[Full-Scale]** button and you will be prompted to input the full-scale value of your selected input range at the appropriate input channel. If you are using DC Current, this will be 20mA, 11.17mA, or 1mA at TB1, depending on the Input Range selected. If you are using DC voltage, this will be 0.5V at TB2. Calibration does not use your scaled full-scale, but the full-scale of the nominal input range. Once you input full-scale precisely, click the **[OK]** button and follow the on-screen prompt to calibrate full-scale.

Calibration...

TT336 Configuration Software	?
ie	
Communication Setup I/O Config/Test Calibration	
CALIBRATION	
Input	
Input Cal Instructions	
Zero Full Scale	
Output	
Output Cal Instructions	
Zero Full Scale	
FACTORY SETTINGS	
Restore Factory Calibration Restore to Factory Default	
Resure Factory Calibration Resure to Factory Default	
CALIBRATION STATUS	

Factory Settings

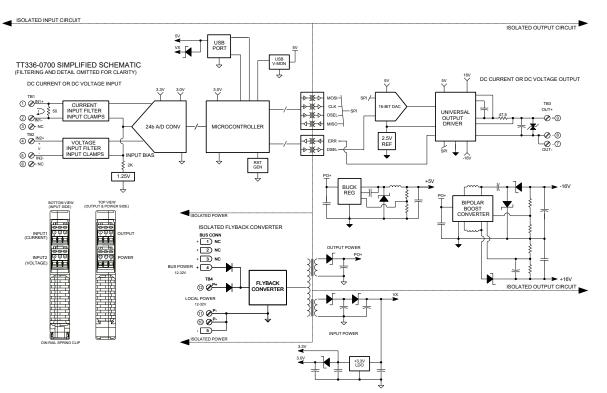
Calibration Status

CALIBRATION – Output

Click the **[Output Cal Instructions]** button to begin output calibration and enable the Output [Zero] and [Full-Scale] buttons.

First adjust the input signal as necessary to drive the output signal to precisely the zero of your selected output range (i.e. -20.000mA, 0mA, 4.000mA, -10V, -5V, or 0V, depending on your output range setting). Be sure to measure this output level accurately, or performance will be degraded. After driving the output to its precise output range zero, click the Output [**Zero**] button of the Calibration Output section to calibrate the output zero signal level.

Next adjust the input signal as necessary to drive the output signal to precisely the full-scale of your selected output range (i.e. 20.000mA, 5V, or 10V, according to your output range setting). Be sure to measure this output level accurately, or performance will be degraded. After driving the output to precisely full-scale for the output range, click the Output [Full-Scale] button of the Calibration Output section to calibrate the output full-scale signal level.


If your output acts erratic or appears imprecise, you may need to repeat input or output calibration, being very careful to take accurate measurements and input correct signal levels. For current outputs, if you are measuring a voltage across an output load resistance, make sure that you use the exact load resistance when calculating the load current being measured. Also when rescaling your input to a smaller sub-range, make sure that you still have adequate input span, as tootight input spans have diminished resolution and will magnify error.

You can use the **[Restore Factory Calibration]** button to restore the transmitter's original factory calibration if you think you made an error during recalibration, degraded its performance, or the I/O channel appears erratic.

You can use the **[Restore to Factory Default]** button to return the unit to its original factory configuration settings. This does not restore calibration, only configuration. Alternately, this button can be used as a sanitation tool to restore the unit to its initial configuration when decommissioning a module.

This field displays calibration status messages like "No Error", "Transfer Error", and "Timeout Error" during calibration. If you encounter a Transfer or Timeout Error, you may have to repeat the calibration process.

BLOCK DIAGRAM

How It Works

Key Points of Operation

- Unit is DC Powered
- Power is Isolated
- Input is Isolated
- Input is Differential
- Separate inputs for current and voltage.
- Input circuit ground is common to USB ground.
- Output is universal, current or voltage.

This transmitter uses a 32-bit microcontroller and a high-resolution 24-bit A/D to digitize the input signal and communicate to the output DAC via an SPI bus, isolated via digital isolators. This signal is transmitted to a 16-bit output DAC which drives a universal output driver for current or voltage. The output is very unique in that it may drive current or voltage to the load without having to change connections (only the load resistance must be adjusted). The output range is user-configured via the isolated SPI bus. Power for the isolated input and isolated output circuits is provided via an isolated fly-back converter that operates on voltage wired to the power terminals at TB4, or wired to optional bus power terminals along the DIN rail. Setup involves selecting the input range (current or voltage), selecting the output range endpoints to the output range zero/full-scale endpoints. I/O scaling can also be done in reverse to produce a reverse acting output signal. Refer to the block diagram above to gain a better understanding of how this transmitter works.

The input/USB, output, and power circuits are all isolated from each other. This unit does not draw power from USB. The USB port ground is common to the input circuit ground. The USB port ground of most PC's is also common to the USB cable shield and earth ground. Input sensors could be grounded or ungrounded. For this reason, it is recommended that USB signals be isolated when connected to a PC to prevent a ground loop from occurring between the PC earth ground and a grounded input sensor, which would have the negative effect of pulling the input bias supply to ground and clipping any negative range.

TROUBLESHOOTING

Diagnostics Table

Before attempting repair or replacement, be sure that all installation and configuration procedures have been followed and that the unit is wired properly. Verify that power is applied to the unit and that your supply voltage is at least 12V. Verify that your load is appropriate to your output type, current or voltage

If your problem still exists after checking your wiring and reviewing this information, or if other evidence points to another problem with the unit, an effective and convenient fault diagnosis method is to exchange the questionable unit with a known good unit.

Acromag's Application Engineers can provide further technical assistance if required. Repair services are also available from Acromag.

POSSIBLE CAUSE	POSSIBLE FIX		
Cannot Communicate with Transmitter via USB			
Output shifts off-range when you connect USB			
Output Erratic, Not operational, or at Wrong Value			
Unit fails to operate or exhibits a	n output shift		
A missing USB Isolator could cause a ground loop between a grounded input sensor and earth ground at the connected Personal Computer's USB port.	Without USB isolation, a ground loop is possible between a grounded input signal and earth ground of the PC USB port. The input of this model is normally biased to 1.25V off input ground to process negative- going signals. A grounded signal source could inadvertently short this bias to earth ground and clip the negative input range with a non- isolated USB connection to a PC. For this reason and for increased safety and noise immunity, it is best to connect to USB via a USB isolator. Use an isolator like the Acromag USB-ISOLATOR. Otherwise, use a battery powered laptop to configure the transmitter, which does not normally earth ground its USB port.		
Software Fails to Detect Transmit	tter		
Bad USB Connection	Recheck USB Cable Connection.		
USB has not enumerated the device.	Use the reset button on the Acromag USB isolator to trigger renumeration of the transmitter, or simply unplug and replug the USB cable to the transmitter.		
Communication or power was	Close the current connection with the		
interrupted while USB was connected with configuration software running.	software, then select and re-open the transmitter for communication (or simply exit the Configuration software and reboot it).		
For an input step, the output appears to make 2 steps to reach its final value			
For a step change in the input, the A/D needs 2 input samples to charge to its final level.	When you step the input signal, it takes two samples for the A/D to charge up to its final output level, and this is evident when using a scope to examine the output transition in response to a step change at the input, which appears to make two steps in its transition to its final level.		

Diagnostics Table	POSSIBLE CAUSE	POSSIBLE FIX	
	Output goes right to Over-Range (105%) or Under-Range Limit		
	This indicates that either the input signal is out of range, or a sensor lead has broken. It can also occur due to contention between earth ground at the PC USB port and the input sensor.	Check the input signal with respect to its range and reduce or increase it as required to drive the output within its linear operating range. A fully upscale or down- scale signal can be driven by a sensor fault, such as an open or broken sensor lead. Also check the wiring of your input sensor. If you are not isolating USB, check for a ground loop between a grounded sensor and earth ground of the PC USB port.	
	Cannot Calibrate Input Channel		
	Is input wired properly?	Check that input is wired to ± input terminals using correct polarity.	
	Cannot Measure Input Voltage or Current		
	Have you wired the input to the correct terminals for the range selection?	DC Current is input to TB1 (upper block), while voltage is input to TB2 (lower block). Make sure that you are wired to the proper input per your signal type.	
	Output Noise Seems Excessive		
	Scaled input range is too small.	Scaling the input to very small spans diminishes input resolution and signal to noise ratio, potentially magnifying error. Increase the input span.	

Service & Repair Assistance

This unit contains solid-state components and requires no maintenance, except for periodic cleaning and transmitter calibration (zero and full-scale) and verification. Its enclosure is not meant to be opened for access and can be damaged easily if snapped apart. It is highly recommended that a non-functioning transmitter be returned to Acromag for repair or replacement. Acromag has automated test equipment that thoroughly checks and calibrates the performance of each transmitter, and can restore firmware. Please refer to Acromag's Service Policy and Warranty Bulletins, or contact Acromag for complete details on how to obtain repair or replacement.

ACCESSORIES

Software Interface Package

Software Interface Package/Configuration Kit – Order TTC-SIP

- USB Signal Isolator
- USB A-B Cable 4001-112
- USB A-mini B Cable 4001-113
- Configuration Software CDROM 5040-944

This kit contains all the essential elements for configuring TT family Transmitters. Isolation is recommended for USB port connections to these transmitters and will block a potential ground loop between your PC and a grounded input. A software CDROM is included that contains the Windows software used to program TT transmitters.

USB Isolator

USB Isolator – Order USB-ISOLATOR

- USB Signal Isolator
- USB A-B Cable 4001-112
- Instructions 8500-900

This kit contains a USB isolator and a 1M USB A-B cable for connection to a PC. This isolator and cable are also included in TTC-SIP (see above).

USB A-B Cable – Order 4001-112

USB A-B Cable 4001-112

This is a 1 meter, USB A-B replacement cable for connection between your PC and the USB isolator. It is normally included with the TTC-SIP Software Interface Package and also with the isolator model USB-ISOLATOR.

USB A-mini B Cable – Order 4001-113

• USB A-mini B Cable 4001-113

This is a 1 meter, USB A-miniB replacement cable for connection between the USB isolator and the TT230 transmitter. It is normally included in TTC-SIP.

Note that software for all TT Series models is available free of charge, online at www.acromag.com.

USB A-B Cable

USB A-mini B Cable

USB OTG Cable

USB OTG Cable – Order 5028-565

• USB OTG Cable 5028-565

This is a 6 inch, USB On-The-Go cable for connection between the USB A-mini B Cable and a mobile phone or tablet. It is required to use the Acromag Agility™ Config Tool App.

Note that the Acromag Agility ${}^{\mathrm{TM}}$ Config Tool is available free of charge, online at the Google Play store.

DIN Rail Bus Connector Kit

NORMALLY PROVIDED WITH TT MODULE Bus Connector Kit for DIN Rail Bus Connection to Power Model TTBUS-KIT

This kit contains one each of the following terminals

- DIN Rail Bus Connector 1005-063 for 17.5mm TT Modules.
- Left Side terminal block, female connector 1005-220.
- Right Side terminal block, male connector 1005-221.
- Two End Stops for 35 mm DIN Rails 1027-222 (not shown).

This module was shipped with the first item included in this kit, DIN Rail Bus Connector 1005-063, and this kit offers a spare. Left and right side terminal blocks that mate directly to the bus connector are included in this kit. These terminals are used to optionally (or redundantly) drive power to Series TT modules via their DIN rail bus connector. This also allows modules to neatly and conveniently share connections to Power. Two end stops 1027-222, used to secure the terminal block and module for hazardous location installations.

End Stops

Two End Stops – Order 4001-252

• Two 1027-222 End Stops for 35 mm DIN Rail mounting

For hazardous location installations (Class I, Division 2 or ATEX/IECEx Zone 2), you can use two end stops (Acromag 1027-222) to help secure modules to 35mm DIN rail (not shown).

SPECIFICATIONS

Model Number

Model TT336-0700

Signal Transmitter Isolated DC I/V Input Four-Wire Powered CE Approved Includes UL/cUL Class 1, Division 2 approvals

Custom calibration to your specifications can be added as a separate line item at time of purchase. The TT336 model prefix denotes a combination DC current and DC voltage input type of the DIN-Rail Mounted Series TT "Thin Transmitter" family. The trailing "-0700" model suffix denotes 4-wire power with CE and UL/cUL Class 1, Division 2 Approvals included.

Optional factory calibration to your own specification is ordered as a separate line item at time of purchase, and on a per unit basis. Factory calibration will require the specification of nominal input range, output range, scaled input range zero, and scaled input range full-scale. You can also specify a normal or reverse acting output and a filter level. You can obtain form 8500-858 for specifying this calibration info from our web site at www.acromag.com.

The standard model without adding custom factory calibration is calibrated by default as a 4-20mA isolator with 4-20mA DC (wired to TB1) and mapped to 4 to 20mA at the output, with medium input filter selection, and a normal acting output.

Recalibration of any model will require use of the TTC-SIP configuration kit, ordered separately (see Accessories section).

Models can be mounted on standard 35mm "T" Type DIN rail.

Input

This model has separate inputs for current and voltage. DC current is input at TB1 terminals, and DC voltage at TB2 terminals only. Only one input, current or voltage, may drive the output at one time. Input Reference Test Conditions: 4 to 20mA current input at TB1, or $\pm 0.5V$ input at

TB2; 4-20mA output into a 250 Ω load; 25 $^{\circ}$ C Ambient ; and 24V DC Supply. **DC Current (Input 1 at TB1 Only):** Configurable for 0 to 20mA, 4-20mA, 0-11.17mA, ±1mA, and 0-1mA DC nominal input ranges, ±21mA maximum. Inputs may be rescaled to drive the output using only a portion of the nominal input range. A precision 24.9 Ω current sink resistor converts the input current to a voltage that is processed differentially by the A/D converter. An optional external sensor is required to monitor AC current signals (see Acromag Model 5020-350). This toroidal sensor generates 0 to 11.17mA DC to drive the DC current input of this module with AC input current through its primary (see Table 1 below for scaling the AC current by number of primary turns).

DC Voltage (Input 2 at TB2 Only): No voltage divider is present on this input. Input is configurable for DC voltage ranges of $\pm 0.5V$, and 0-500mV. Voltage input impedance is $15M\Omega$ minimum.

Note: Only one input channel, current or voltage, may drive the output of this unit at one time, and this is determined by your input range selection.

Input Overvoltage Protection: Bipolar Transient Voltage Suppressers (TVS), 5.6V clamp level typical. Also includes differential input diode clamping, capacitive filtering, and series resistance.

Analog to Digital Converter (A/D): Input utilizes a 24-bit, Σ - Δ A/D converter, with only the first 16-bits used. Its signal is then normalized to a bipolar range count of ±25000 to simplify I/O scaling (see Resolution below).

Input...

Sampling Rate (A/D): Input is sampled at a variable rate according to the input filter selection as follows:

A/D SAMPLING RATE (SAMPLES/SECOND) PER INPUT FILTER			
NONE LOW MED HIGH			
214.65sps	53.6625sps	13.42sps	1.6775sps

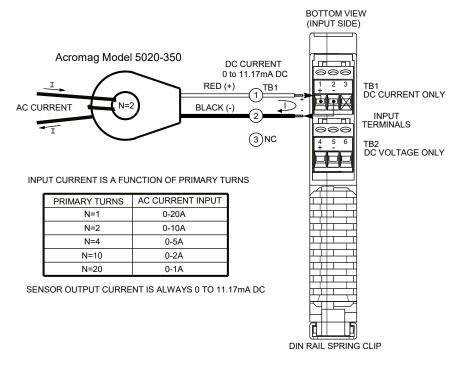
Input Filter: Normal mode RC filtering, plus digital filtering, optimized and fixed per input range and filter selection within the Σ - Δ ADC. See Normal Mode Noise Rejection and Output Response Time.

Input Resolution: The A/D of this model divides the input into a number of parts that can be calculated by subtraction using the expression for A/D counts as (Vin*Gain/1.25)*32768+32768, with Gain=2 for all input ranges except ± 1 mA, where Gain=32. Vin is the DC input voltage of this model (at TB2), or the shunt IR drop (DC Current*24.9 Ω) produced for current ranges (at TB1). The resultant count is then normalized using a bipolar conversion scheme of ± 25000 corresponding to $\pm 100\%$ of input range. That is, -100%, 0% and +100% are represented by decimal values -25000, 0, and 25000, respectively. The effective input resolution for a given range will be the lowest resolution of either the A/D, or its normalized value. An indication of relative input resolution is expressed as the number of parts between the input range low and high endpoints shown in Table 1 (the shaded value is the effective input resolution, or the lowest of the A/D resolution and normalized value).

Table 1: Input Resolution Per Nominal Range			
In Range	A/D Input Resolution	Normalized Input Resolution	
-0.5V to +0.5V	6554 to 58982	±25000 or 1 part in 50000	
	or 1 part in 52428		
0 to 500mV DC	32768 to 58982	1 part in 25000	
	or 1 part in 26214		
-20mA to +20mA	32768 to 58878, or	±25000 or 1 part in 50000	
	1 part in 52220		
0 to 20mA	32768 to 58878	1 part in 25000	
	or 1 part in 26110		
4 to 20mA	37990 to 58878	1 part in 25000	
	or 1 part in 20888		
0 to 11.17mA	32768 to 47350	1 part in 25000	
	or 1 part in 14582		
-1mA to +1mA	11880 to 53656	±25000 or 1 part in 50000	
	or 1 part in 41776		

This unit allows a portion of the nominal input range to be rescaled to the 4-20mA output. However, your effective input resolution will be proportionally diminished as you reduce the input range below nominal. The actual I/O resolution of this transmitter will be the lowest resolution of either the input, or the output. In most cases it is dominated by the input resolution as the minimum output resolution is greater at 1 part in 46877 for 4-20mA out.

Noise Rejection (Common Mode): Varies with input and input filter selection between 93dB (no filter) and 124dB (high filter), typical, with 100Ω input unbalance.


Input...

Noise Rejection (Normal Mode): Varies with input and input filter selection. Table below indicates the typical rejection at 60Hz for each input and input filter selection. Note that at the medium and high input filter settings, the A/D converter adds 80dB minimum of rejection for frequencies between 49Hz and 61Hz.

	TYPICAL 60Hz REJECTION PER INPUT & INPUT FILTER			
INPUT RANGE	NONE	LOW	MED	HIGH
TB1 (±20mA/4-20mA)	4.2dB	10dB	> 80dB	> 80dB
TB2 (±0.5V)	7dB	25dB	> 80dB	> 80dB

Optional AC Current Sensor (Model 5020-350, For AC Current Input to TB1): This sensor can be connected to <u>TB1</u> of this model for AC current sensing and is a toroidal instrument transformer that converts the sinusoidal 50-60Hz AC current signal into a low level DC milliampere signal of 0 to 11.17mA. The input AC current range is a function of the number of turns placed through the toroid as shown in Table 2 below. This sensor is isolated and requires no calibration or adjustment. When used with a TT336 module, it also facilitates current input isolation from the voltage input, and redundant current input isolation with respect to the output of this transmitter.

MODEL TT336-0700 WIRING TO AC CURRENT SENSOR

The output wires of this sensor are polarized with red as plus (+) and black as minus (-). Normally these output wires are attached to one end of a user supplied cable, while the other end connects to the process current input terminals at TB1 of this module, as shown above (current input to input+ and returned via input-).

Input...

Table 2: Optional AC Current Sensor Turns & Range			
AC Current Input Range	Primary Turns	Sensor Output (Red/Black Wires)	
0 to 20A AC	1	0 to 11.17mA DC	
0 to 10A AC	2	"	
0 to 5A AC	4	"	
0 to 2A AC	10	"	
0 to 1A AC	20	u	

AC Input Burden: A function of the wire gauge resistance used for primary turns (the current carrying wire being monitored).

AC Current Sensor to Transmitter Wiring Distance: 400 feet maximum for 18 gauge wire. Other wire gauges can be used as long as the resistance of both wires is less than 5Ω .

AC Input Overload: The AC current sensor will withstand overload conditions as follows:

- 20 times full scale for 0.01 seconds.
- 10 times full scale for 0.1 seconds.
- 5 times full scale for 1.0 second.

Output

Output Range Selection: Unit can be configured for one of seven nominal output ranges shown below. The \pm 5V output range is a sub-range of the \pm 10V range. All output ranges include approximately 5% of over-range capability.

OUTPUT RANGE	OUTPUT RANGE w/ OVER-RANGE
-10V to +10V	-10.5V to +10.5V
-5V to +5V	-5.25V to +5.25V
0-10V	-0.5527V to +10.5V
0-5V	-0.27634V to +5.25V
±20mA	-21mA to +21mA
0-20mA	-1.1054mA to +21mA
4-20mA	-1.1054mA to +21mA

Accuracy: Accuracy is better than $\pm 0.05\%$ of span, typical ($\pm 0.1\%$ maximum), for nominal input spans. This includes the effects of repeatability, terminal point conformity, and linearization, but does not include sensor error.

Note: Scaling smaller than nominal input ranges to the output can increase potential error as input resolution and the signal-to-noise ratio are diminished for very small input spans.

Output Load: Voltage output can drive loads down to $1K\Omega$ minimum. Current output can drive 20mA DC into 0-525 Ω .

<u>Note (High Speed Acquisition)</u>: Additional filtering at the load is recommended for sensitive applications with high-speed acquisition rates. High frequency noise is often reduced or eliminated by placing a 0.1uF capacitor directly across the load. For excessive 60Hz supply ripple with current output, a 1uF or larger bulk capacitor is recommended at the load.

Output...

Output Ripple: Less than $\pm 0.1\%$ of output span, typical.

Output Ambient Temperature Drift: Includes the combined effects of zero and span drift over temperature and is typically better than ±80ppm/°C (±0.0080%/°C) over the ambient temperature range for reference test conditions (see Input Specifications).

Output Resolution: Output is driven by a 16-bit Voltage DAC, Maxim MAX5216GUA+, with a 2.5V reference, and driving a universal current/voltage output driver. The output resolution per output range is indicated below. The actual effective I/O resolution of the unit will be the lowest resolution of the input A/D, and the output D/A relative to the programmed I/O ranges.

OUTPUT RANGE	Output Resolution, 1lsb, % of Span
-10V to +10V	1 part in 62415, 320.436uV, 0.001602%
-5V to +5V	1 part in 31208, 320.439uV, 0.003204%
0-10V	1 part in 59240, 168.805uV, 0.001688%
0-5V	1 part in 60262, 82.971uV, 0.001659%
±20mA	1 part in 62259, 0.642477uA, 0.001606%
0-20mA	1 part in 58596, 0.341320uA, 0.001707%
4-20mA	1 part in 46877, 0.341319uA, 0.002133%

Output Response Time: Varies with input and input filter level for a step change in the input signal as follows:

TT336-0700	TYPICAL RESPONSE TIME PER INPUT FILTER			
INPUT RANGE	NONE	LOW	MED	HIGH
TB1 (Up to ±20mA)	10ms	34ms	136ms	1168ms
TB2 (Up to ±500mV)	15ms	45ms	120ms	1072ms

USB Interface

Unit includes a USB socket for temporary connection to a PC or laptop for the purpose of configuration and calibration. USB isolation is required when also connected to a grounded input sensor (see "IMPORTANT" note below). During reconfiguration and calibration, the transmitter receives power from its power connection (via DIN rail bus or power terminal TB4), <u>not</u> USB. As such, you must connect power to the unit when you connect USB.

<u>CAUTION</u>: Do not attempt to connect USB in a hazardous environment. Transmitter should be setup and configured in a safe environment only.

Data Rate: USB v1.1 full-speed only, at 12Mbps. Up to 32K commands per second. USB 2.0 compatible.

Transient Protection: Adds transient voltage protection on USB power & data lines. **Cable Length/Connection Distance**: 5.0 meters maximum.

Driver: No special drivers required. Uses the built-in USB Human Interface Device (HID) drivers of the Windows Operating System (Windows XP or later versions only).

USB Interface...

USB Connector: 5-pin, Mini USB B-type socket, Hirose UX60-MB-5S8.

PIN	DEFINITION
1	+5V Power (Transient Protected, but not used by the module)
2	Differential Data (+)
3	Differential Data (-)
4	NC – Not Connected
5 ¹	Power Ground (Connects to Signal Ground via ferrite bead)
SHLD ¹	Signal Ground (Connects directly to Signal Ground)

¹**Note:** Most Host Personal Computers (except battery powered laptops) will connect earth ground to the USB shield and signal ground.

IMPORTANT – USB Isolation is recommended: The input of this transmitter is isolated from its output and can be connected to grounded or un-grounded input sensors. However, the transmitter's input circuit ground is connected in common to the USB power/signal/shield ground. This will in-turn make a connection to earth ground at the PC when directly connected to the USB port of a Personal Computer without using an isolator. Failure to connect USB without isolation would short the 1.25V input bias supply to input ground if the sensor is also earth grounded. This will interfere with operation, truncate the negative input range, and possibly shift the output. For this reason, USB isolation is strongly recommended when connecting to a PC. Otherwise, in the absence of USB isolation, and when connected to a grounded input sensor, a battery powered laptop could be used to connect to the unit, as the laptop does not normally connect to earth ground.

Power

Power Supply (Connect at TB4 or via DIN Rail Bus Terminal): 12-32V DC SELV (Safety Extra Low Voltage), 1.3W maximum. Observe proper polarity. Reverse voltage protection is included. Current draw varies with power voltage as follows (currents indicated assume a current output driving 21mA into a load).

SUPPLY	TT336-0700 CURRENT		
12V	96mA Typ / 117mA Max		
15V	72mA Typ / 80mA Max		
24V	46mA Typ / 51mA Max		
32V	35mA Typ / 39mA Max		

CAUTION: Do not exceed 36VDC peak to avoid damage to the unit. Terminal voltage at or above 12V minimum must be maintained across the unit during operation. **Power Supply Effect:** Less than $\pm 0.001\%$ of output span effect per volt DC change.

Enclosure & Physical

General purpose plastic enclosure for mounting on 35mm "T-type" DIN rail. **Dimensions**: Width = 17.5mm (0.69 inches), Length = 114.5mm (4.51 inches), Depth = 99.0mm (3.90 inches). Refer to Mechanical Dimensions drawing. **I/O Connectors:** Removable plug-in type terminal blocks rated for 12A/250V; AWG #26-12, stranded or solid copper wire.

Program Connector: 5-pin, Mini USB B-type socket, Hirose UX60-MB-5S8.

Enclosure & Physical	 Case Material: Self-extinguishing polyamide, UL94 V-0 rated, color light gray. General purpose NEMA Type 1 enclosure. Circuit Board: Military grade fire-retardant epoxy glass per IPC-4101/98. DIN-Rail Mounting: Unit is normally mounted to 35x15mm, T-type DIN rails. Refer to the DIN Rail Mounting & Removal section for more details. Shipping Weight: 0.5 pounds (0.22 Kg) packed.
Environmental	
	 These limits represent the minimum requirements of the applicable standard, but this product has typically been tested to comply with higher standards in some cases. Operating Temperature: -40°C to +80°C (-40°F to +176°F). Storage Temperature: -40°C to +85°C (-40°F to +185°F). Relative Humidity: 5 to 95%, non-condensing. Isolation: Input/USB, output, and power circuits are all isolated from each other for common-mode voltages up to 250VAC, or 354V DC off DC power ground, on a continuous basis (will withstand 1500VAC dielectric strength test for one minute without breakdown). Complies with test requirements of ANSI/ISA-82.01-1988 for voltage rating specified. Installation Category: Suitable for installation in a Pollution Degree 2 environment with an Installation Category (Over-voltage Category) II rating per IEC 1010-1 (1990). Shock & Vibration Immunity: Conforms to: IEC 60068-2-61: 10-500 Hz, 4G, 2 Hours/axis, for random vibration, and IEC 60068-2-64: 10-500 Hz, 4G, 2 Hours/axis, for random vibration, and IEC 60068-2-64: 10-500 Hz, 4G-rms, 2 Hours/axis, for random vibration and IEC 60068-2-64: 10-500 Hz, 4G-rms, 2 Hours/axis, for random vibration, and IEC 60068-2-64: 10-500 Hz, 4G-rms, 2 Hours/axis, for random vibration, and IEC 60068-2-64: 10-500 Hz, 4G-rms, 2 Hours/axis, for random vibration, Per IEC 61000-4-3. Electrostatic Discharge Immunity (ESD), per IEC 61000-4-2. Radiated Field Immunity (RFI), per IEC 61000-4-6. This is a Class B Product with Emissions per BS EN 61000-6-3: Enclosure Port, per CISPR 16. Low Voltage AC Mains Port, per CISPR 14, 16. DC Power Port, per CISPR 16. Telecom / Network Port, per CISPR 22.

Agency Approvals

Electromagnetic Compatibility (EMC): CE marked, per EMC Directive 2004/108/EC.

FCC Conformity: This device complies with Part 15, Class B of the FCC rules.

Safety Approvals: UL Listed (USA & Canada). Hazardous Locations – Class I, Division 2, Groups A, B, C, D Hazardous Location or Nonhazardous Locations only. These devices are open-type devices that are to be installed in an enclosure suitable for the environment.

ATEX/IECEx Certified: Model TT336-0700 is ATEX/IECEx Certified for Explosive Atmospheres per ATEX Directive 2014/34/EU which complies with standards EN IEC 60079-0:2018, EN IEC 60079-7:2015 +A1:2018, IEC 60079-0 Edition 7, and IEC 60079-7 Edition 5.1.

 $\langle E_x \rangle$ II 3 G Ex ec IIC T4 Gc -40°C \leq Ta \leq +80°C

DEMKO 15 ATEX 1561X IECEx UL 18.0091X

X = Special Conditions

- 1) The equipment shall only be used in an area of not more than pollution degree 2, as defined in EN/IEC 60664-1.
- The equipment shall be installed in an enclosure that provides a degree of protection not less than IP 54 and only accessible with the use of a tool in accordance with EN/IEC 60079-0.
- Transient protection shall be provided that is set at a level not exceeding 140
 % of the peak rated voltage value at the supply terminals to the equipment.

Reliability Prediction

Reliability Prediction

MTBF (Mean Time Between Failure): MTBF in hours using MIL-HDBK-217F, FN2. *Per MIL-HDBK-217, Ground Benign, Controlled,* G_BG_C

Temperature	MTBF (Hours)	MTBF (Years)	Failure Rate (FIT)
25°C	1,172,033 hrs	133.8 years	853
40°C	769,367 hrs	87.8 years	1,300

Configuration Controls

Software Configuration Only via USB

This transmitter drives an analog output current or voltage proportional to a sensor input based on the differential voltage measurement across the sensor (voltage input at TB2), or differential voltage measured across its 24.9 Ω current shunt resistor (for current input at TB1). No switches or potentiometers are used to make adjustments to this transmitter. Its behavior as an isolated signal amplifier/transducer is determined via programmed variables set using a temporary USB connection to a

host computer or laptop running a Windows-compatible configuration software program specific to the transmitter model. This software provides the framework for digital control of all configuration and calibration parameters, and this information is stored in non-volatile memory.

Refer to Operation Step-By-Step in the Technical Reference section of this manual for detailed information on available software control of this model.

Revision History

The following table show the revision history for this document:

Release Date	Version	EGR/DOC	Description of Revision
18-OCT-12	А	JEB/KLK	Initial Acromag release.
26-JULY-13	В	CAP/ARP	Added UL Mark to this model (removed pending), refer to ECN #13G017 for additional information. Added note to USB connections drawing, refer to ECN #13F005 for additional information.
16-DEC-13	С	JEB/ARP	Updated MTBF Numbers. Removed P.O. Box from address.
4-NOV-14	D	JEB/ARP	Added Acromag Agility™ Config Tool Quick Guide. Added USB OTG cable in Accessories Section.
15-OCT-2015	E	CAP/ARP	Added ATEX symbols / statements.
27-NOV-2018	F	CAP/ARP	Added IECEx / FCC statements.
18 NOV 2022	G	CAP/AMM	Update EN IEC Standards. Changed ATEX/IECEx protection method from "nA" to "ec".