

RETIRED

ARCX 4000 Series

Ruggedized/Military/Industrial Computer USER'S MANUAL

ACROMAG INCORPORATED

30765 South Wixom Road Wixom, MI 48393-7037 U.S.A. Tel: (248) 295-0310 Fax: (248) 624-9234

Copyright 2015, Acromag, Inc., Printed in the USA. Data and specifications are subject to change without notice.

8501-025G

Table of Contents

1.0	GEN	ERAL INFORMA	TION	5
	1.1	Intended Audience	9	5
	1.2	Preface		5
		1.2.1 Trademark,	Frade Name and Copyright Information	5
		1.2.2 Class A Produ	uct Warning	5
		1.2.3 Environment	al Protection Statement	5
	1.3	ARCX 4000 Series.		6
		1.3.1 Key Features		6
		•	1-6400)	
		-		
		Memory		7
	1.4	0	on	
		1.4.1 Accessories		10
	1.5	References		12
	1.6	Operating System	Compatibility	12
2.0	PRE	PARATION FOR	USE	13
	2.1	Unpacking and Ins	pecting	13
3.0	BLO	CK DIAGRAMS AI	ND CONNECTOR PIN OUT TABLES	14
	3.1	ARCX-4120 Block I	Diagrams	14
			XCOM-6400 COM Express CPU Module Block Diagram	
		3.1.2	Model ACEX-4620 Carrier Block Diagram	
		3.1.3	Model ACEX-FP-02 Front Panel (standard) Block Diagram	
		3.1.4	ARCX-4120, Top view	17
		3.1.5	ARCX-4120, Bottom view	
	3.2	ARCX-4110 Block I	Diagrams	19
		3.2.1	XCOM-6400 COM Express CPU Module Block Diagram	19
		3.2.2	Model ACEX-4610 Carrier Block Diagram	20
		3.2.3	Model ACEX-FP-01 Front Panel (standard) Block Diagram	
		3.2.4	ARCX-4110, Top view	
			-	

	3.3 Connector Pin Outs	24
	J3 - Keyed-A (130-Pin size #23 38999 type Connector)	
	J4 - Keyed-B (130-Pin size #23 38999 type Connector)	
	J5 - Keyed-C (130-Pin size #23 38999 type Connector)	
	J6 - Keyed-A (6-Pin size #12 38999 type Connector)	
<i>4.0</i>	LED FUNCTION	
	4.1 Power LED	27
	4.2 Status LED	27
	4.3 System power state definitions	28
<i>5.0</i>	SWITCH CONFIGURATION	
	5.1 8-Position Dip switch (located on the Carrier board)	29
6.0	INSTALLING EXPANSION MODULES, MEMORY AND BATTERY	
	6.1 ARCX-4110, disassembly	
	6.2 ARCX-4120, disassembly	
	6.3 ARCX-4110, installing a PMC or XMC module	35
	6.4 ARCX-4120, installing a PMC or XMC module	
	6.5 ARCX-4110 OR ARCX-4120, installing a Mini PCIe or mSATA module	40
	6.6 ARCX-4110 or ARCX-4120, memory access	
	6.7 ARCX-4110 or ARCX-4120, battery access	
	6.8 ARCX-4110, assembly	51
	6.9 ARCX-4120, assembly	53
7.0	SERVICE AND REPAIR	
	7.1 Service and Repair Assistance	55
	7.2 Preliminary Service Procedure	55
	7.3 Where to Get Help	55
8.0	SPECIFICATIONS	
	8.1 Physical	56

Mechanical Dimensions ARCX-4110-XX	57
Mechanical Dimensions ARCX-4120-XX	58
Mechanical Dimensions ARCX-4111-XX	59
	59
Mechanical Dimensions ARCX-4121-XX	60
8.2 Environmental Considerations	61
8.2.1 Operating Temperature and Airflow Requirements	61
8.3 Power Requirements	65
8.31 POWER ESTIMATION TABLES	65
8.4 Other Environmental Requirements	67
8.4.1 Relative Humidity	67
8.4.2 Storage Temperature	
8.4.3 Vibration (operating and Non-operating)	
8.4.4 Mechanical Shock (operating and Non-operating)	
8.4.5 Ingress Protection Water/Dust proof	
8.4.6 CE Marked	
8.4.7 FCC US/Canada	
0.4.7 1 00 00/ 001000	
8.5 Reliability Prediction	68
APPENDIX	
Programmable Power Limits	69
Power Filter (Optional Accessory) installation	71
Features	71
Specification Compliance	71
Front Panel with Mezzanine Option	75
Mezzanine Board Interface	75
Model ACEX-FP-IO-0x Front Panel with Mezzanine Block Diagram	
Replacing mezzanine boards	
Dual SSD Drive Bay Option	79
Dual SSD Drive Bay Option - SSD (Solid State Drive) Installation	82
ATMD-02 Air Cooled Heatsink	83
ATMD-03 Cold Plate	

CERTIFICATE OF VOLATILITY	
REVISION HISTORY	

1.0 GENERAL INFORMATION

1.1 Intended Audience

This user's manual was written for technically qualified personnel who will be working with ARCX series devices using the XCOM-6400 COM Express module. It is not intended for a general, non-technical audience that is unfamiliar with computer-on-module (COM) devices and their application.

1.2 Preface

The information contained in this manual is subject to change without notice, and Acromag, Inc. (Acromag) does not guarantee its accuracy. Acromag makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Further, Acromag assumes no responsibility for any errors that may appear in this manual and makes no commitment to update, or keep current, the information contained in this manual. No part of this manual may be copied or reproduced in any form, without the prior written consent of Acromag,

1.2.1 Trademark, Trade Name and Copyright Information

© 2015 by Acromag Incorporated.

All rights reserved. Acromag and Xembedded are registered trademarks of Acromag Incorporated. All other trademarks, registered trademarks, trade names, and service marks are the property of their respective owners.

1.2.2 Class A Product Warning

This is a Class A product. In a domestic environment this product may cause radio interference, in which case the user may find it necessary to take adequate corrective measures.

1.2.3 Environmental Protection Statement

This product has been manufactured to satisfy environmental protection requirements where possible. Many components used (structural parts, circuit boards, connectors, batteries, etc.) are capable of being recycled. Final disposition of this product after its service life must be conducted in accordance with applicable country, state, or local laws or regulations.

1.3 ARCX 4000 Series

The ARCX 4000 Series offers Ruggedized/Military/Industrial Computer for the Acromag Com Express processor modules. There are two basic model types, ARCX-4120 and ARCX-4110. The ARCX-4120 offers two PMC/XMC expansion sites. The ARCX-4110 offers one PMC/XMC expansion site.

The ARCX 4000 series has the following options:

- Expansion size
- Dual Drive Bay
- Power Filter
- Front Panel

1.3.1 Key Features

- Designed to meet requirements of MIL-STD-810F environmental specification.
- Designed to meet IP67 NEMA Rating.
- Optional Power Filter to meet requirements of MIL-STD-704F and MIL-STD-1275E.
- Programmable Power Limits.
- Wide range input power, 10Vdc-36Vdc through a Size #12 38999 Type connector.
- Power indicator and fault/Status LEDs.
- Supports Acromag Type 6 COM CPU modules.
- Provides access to standard computer peripherals of the Type 6 COM Express CPU module through size #23 38999 Type connector.
 - o Two HDMI/DVI ports
 - o One VGA port
 - o Three USB 2.0 Ports
 - o Two RS-232/485 Communication ports
 - o One SATA port
 - o Two Gigabit Ethernet Ports
 - o Audio (One Line in and One Line out)
 - o Fault/Status LED

- Two mPCIe/mSATA slots are available on the carrier.
- PMC/XMC expansion (Option of one or two sites)
 - PMC/XMC Rear I/O access provided through the front of the ARCX 4000 via MIL-STD #23 38999 type connector.
 - PMC/XMC Front I/O access available through the rear panel of the ARCX 4000.
 - Pocket and PMC/XMC cutout outline indicated on rear panel
 - IP67 rating voided when hole is cut out
- Dual SSD Drive Bay (Option)
 - Two SATA SSD Drive Bays (2.5 inch drive's supported)

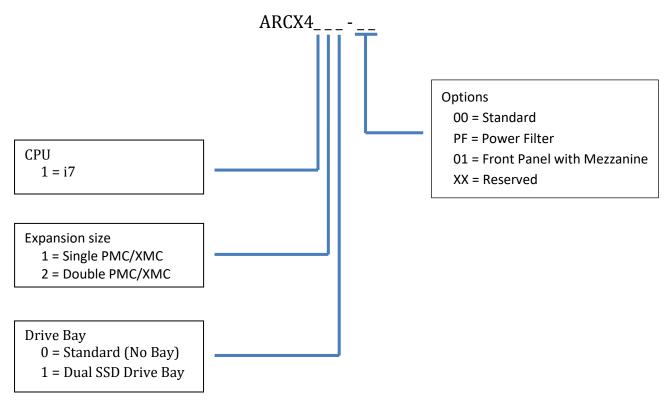
CPU Module (XCOM-6400)

Intel Core[™] i7 processor (4th generation, codename Haswell)

i7-4700EQ: 2.4GHz, quad core, 6Mb cache, 47W.

Chipset

Intel 8-Series QM87 PCH chipset (codename Lynx Point)


Intel DH82QM87 Platform Controller Hub

Memory

16GB of 1600 DDR3L ECC memory (see section 6.6 for more information)

1.4 Ordering Information

Models:

Example:

ARCX-4120-PF (i7 CPU, Double PMC/XMC Expansion size, Power Filter)

Only Lead Free models are available.

Note: Customers requiring lead solder electronics in the ARCX box will be handled as a special with appropriate NRE to cover cost of documenting and lead-time to build.

1.4.1 Accessories

Accessories (optional)	Accessories (optional)					
ACEX-FP-PF-LF	MIL-STD-704F/MIL-STD-1275E Power Filter					
5028-556	38999 #23 size, CPU I/O Peripheral Breakout Cable					
5028-557	38999 #12 size, Power Cable					
5028-558	38999 #23 size Keyed "A" mating cable connector only					
5028-559	38999 #23 size Keyed "C" mating cable connector only					
5028-560	38999 #23 size Keyed "B" mating cable connector only					
5028-561	38999 #12 size Keyed A mating cable connector only					
5028-566	38999 #23 size, PMC/XMC Site 1 Rear I/O Breakout Cable					
5028-567	38999 #23 size, PMC/XMC Site 2 Rear I/O Breakout Cable					
5028-571	ARCX Dual SSD Drive Tray (Spare Drive Tray for Dual SSD Dive Bay Option)					
ATMD-02	Air cooled heatsink					
ATMD-03	Cold Plate, 8" x 10" Assembly					

Note: The cables/connectors in the table above are for development and are not IP67 rated.

Note: 5028-566 and 5028-567 cables are intended for use with two 5025-288 SCSI-3 termination panels.

5028-556

Customers that need IP67 cables can use the following connectors/boots that are available thru Amphenol or Aero Electric:

Amphenol Part Number	Connector Description	Straight Shrink boot Part number	Right Angle Shrink boot Part number
2M805-002-16ZNU23- 130PA	CONN P CIR 130 38999 #23 keyed A PLUG IP67	2M809S060-6H	2M809A060-6H
2M805-002-16ZNU23- 130PB	CONN P CIR 130 38999 #23 keyed B PLUG IP67	2M809S060-6H	2M809A060-6H
2M805-002-16ZNU23- 130PC	CONN P CIR 130 38999 #23 keyed C PLUG IP67	2M809S060-6H	2M809A060-6H
2M805-002-16ZNU12- 201PA	CONN P 6 CIR 38999 #12 Keyed A PLUG IP67	2M809S060-4H	2M809A060-4H
Aero Electric Part Number	Connector Description	Straight Shrink boot Part number	Right Angle Shrink boot Part number
AE96MM-26-Y23-130PA- 002	Ultra High Density 38999 III plug, shell size 23, integral rear, normal/A clocking	AE94MM-809S060-6H	AE94MM-809A060-6H
AE96MM-26-Y23-130PB- 002	Ultra High Density 38999 III plug, shell size 23, integral rear, alternate/B clocking	AE94MM-809S060-6H	AE94MM-809A060-6H
AE96MM-26-Y23-130PC- 002	Ultra High Density 38999 III plug, shell size 23, integral rear, alternate/C clocking	AE94MM-809S060-6H	AE94MM-809A060-6H
AE96MM-26-Y12-201PA- 002	Ultra High Density 38999 III plug, shell size 12, integral rear, normal/A clocking	AE94MM-809S060-4H	AE94MM-809A060-4H

1.5 References

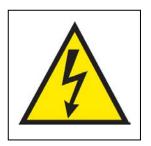
The following resources regarding COM Express modules, the XCOM-4600 EDK board, and the Haswell© family of Intel[®] core processors are available for download on Acromag's website or by contacting your sales representative.

- XCOM-6400 COM Express CPU Module User's Manual <u>www.acromag.com</u>
- APTIO[™] Core BIOS Manual (for Acromag[®] Products featuring the Intel[®] 4th Generation "Haswell" Core Processor Family) <u>www.acromag.com</u>
- ACEX-4610/4620 COM Express Carrier Board User's Manual www.acromag.com
- ACEX-FP-0X Front Panel Board User's Manual ACEX-FP-I0-0X Front Panel Board with Mezzanine User's Manual www.acromag.com
- XCOM-4600-EDK Engineering Design Kit Board <u>www.acromag.com</u>
- Intel[®] document No. 328901, "Mobile 4th Generation Intel[®] Core[™] Processor Family Datasheet – Volume 1 of 2", Rev: 002; September, 2013.

www.intel.com/content/www/us/en/processors/core/CoreTechnica IResources.html

 COM Express Module Base Specification Rev. 2.1 <u>www.picmg.org</u>

1.6 Operating System Compatibility


Microsoft Windows 8.1 (32bit & 64bit)

Microsoft Windows 7 (32bit & 64bit)

PMC and XMC modules may require hardware device driver's specific to your operating system to operate properly. Refer to your PMC or XMC manual for more information.

2.0 PREPARATION FOR USE

IMPORTANT PERSONAL AND PRODUCT SAFETY CONSIDERATIONS

It is very important for the user to consider the possible safety implications of power, wiring, component, sensor, or software failures in designing any type of control or monitoring system. This is especially important where personal injury or the loss of economic property or human life is possible. It is important that the user employ satisfactory overall system design. It is understood and agreed by the Buyer and Acromag that this is the Buyer's responsibility.

WARNING: This board utilizes static sensitive components and should only be handled at a static-safe workstation. This product is an electrostatic sensitive device and is packaged accordingly. Do not open or handle this product except at an electrostatic-free workstation. Additionally, do not ship or store this product near strong electrostatic, electromagnetic, magnetic, or radioactive fields unless the device is contained within its original manufacturer's packaging. Be aware that failure to comply with these guidelines will void the Acromag Limited Warranty.

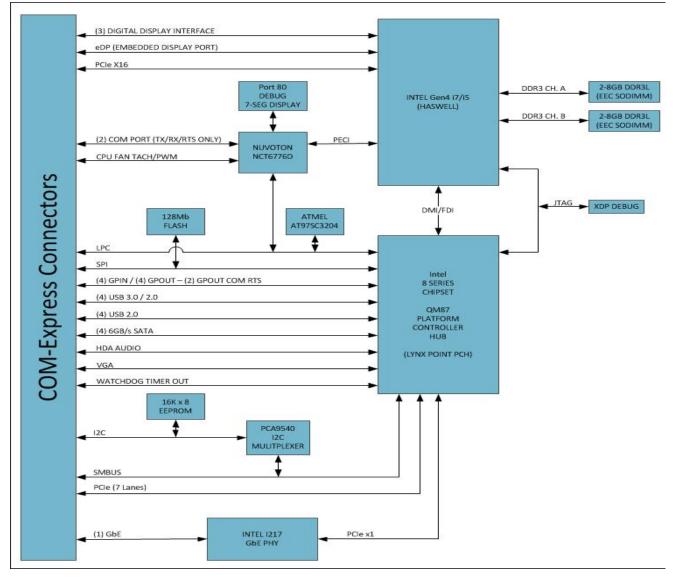
2.1 Unpacking and Inspecting

Upon receipt of this product, inspect the shipping carton for evidence of mishandling during transit. If the shipping carton is badly damaged or water stained, request that the carrier's agent be present when the carton is opened. If the carrier's agent is absent when the carton is opened, and the contents of the carton are damaged, keep the carton and packing material for the agent's inspection.

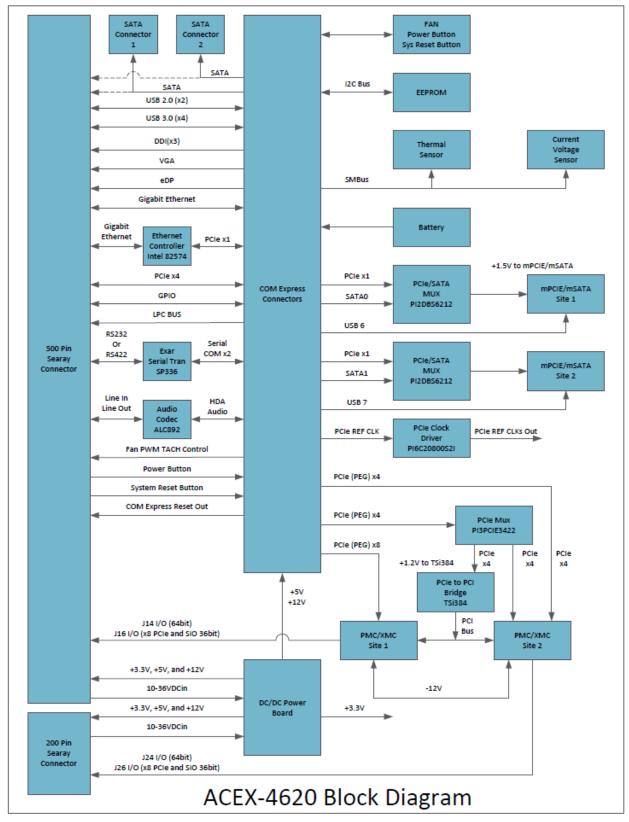
For repairs to a product damaged in shipment, refer to the Acromag Service Policy to obtain return instructions. It is suggested that salvageable shipping cartons and packing material be saved for future use in the event the product must be shipped.

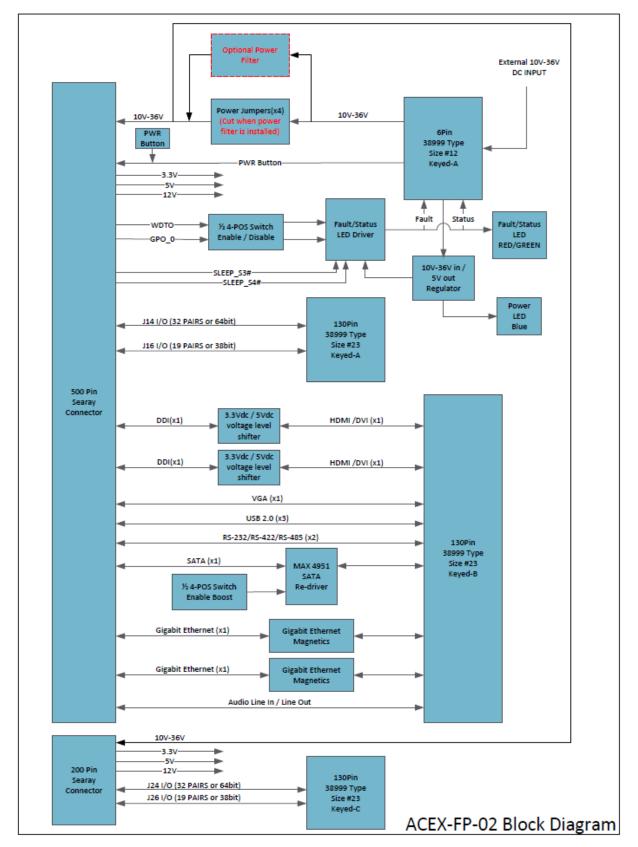
This product is physically protected with packing material and electrically protected during shipment. However, it is recommended that the product be visually inspected for evidence of mishandling prior to applying power.

3.0 Block Diagrams and Connector Pin out Tables

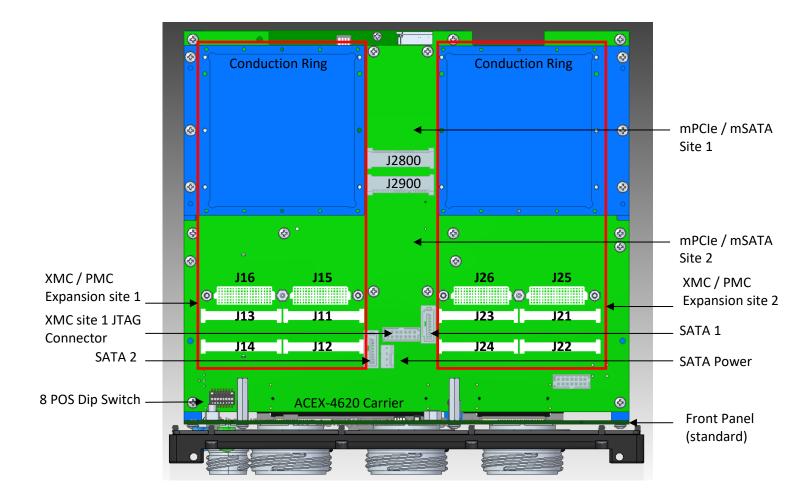

3.1 ARCX-4120 Block Diagrams

The ARCX-4120 is made up from 3 main components

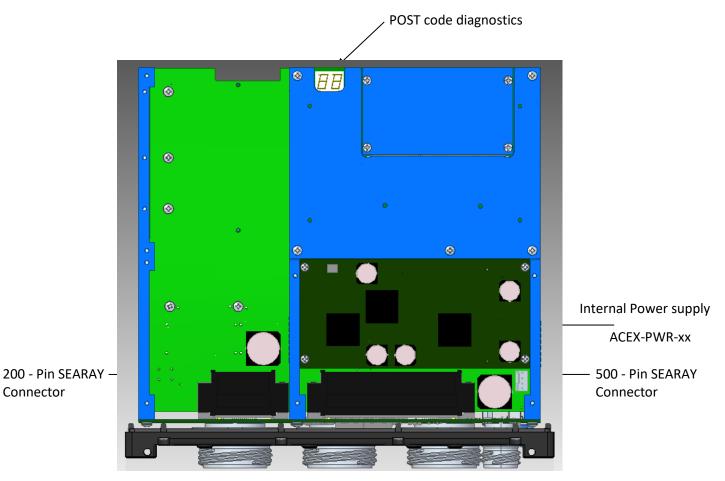

- XCOM-6400 COM Express CPU Module
- ACEX-4620 Carrier Board
- ACEX-FP-02 Front Panel Board (standard)


The block diagrams for each component are shown below in Figs. 3.1.1, 3.1.2, and 3.1.3. These may be a helpful reference as you review the connector pin out tables in this section.

3.1.1 XCOM-6400 COM Express CPU Module Block Diagram

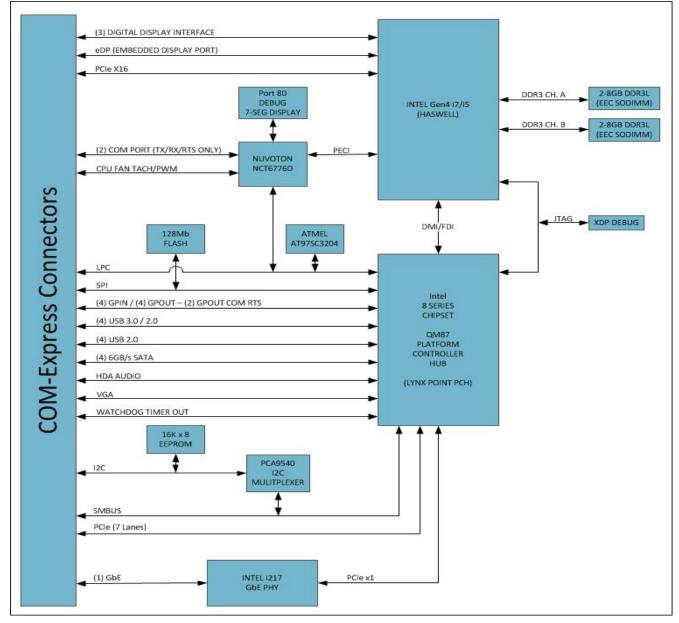

3.1.2 Model ACEX-4620 Carrier Block Diagram

3.1.3 Model ACEX-FP-02 Front Panel (standard) Block Diagram

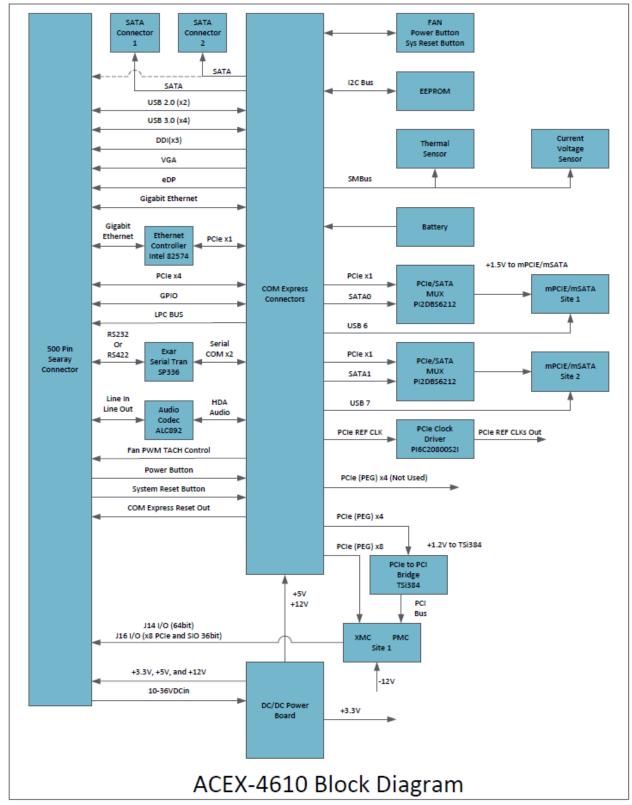

3.1.4 ARCX-4120, Top view

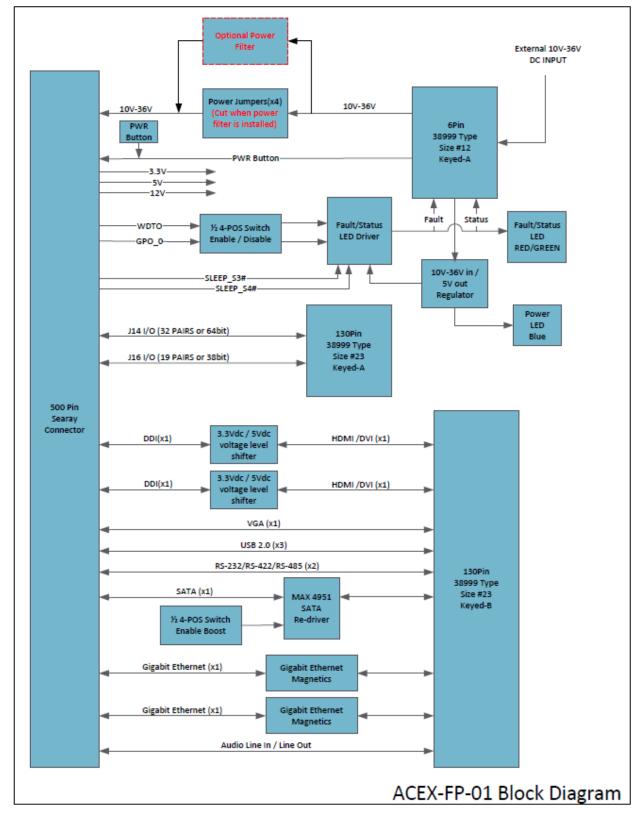
Front Panel (front view)

3.1.5 ARCX-4120, Bottom view

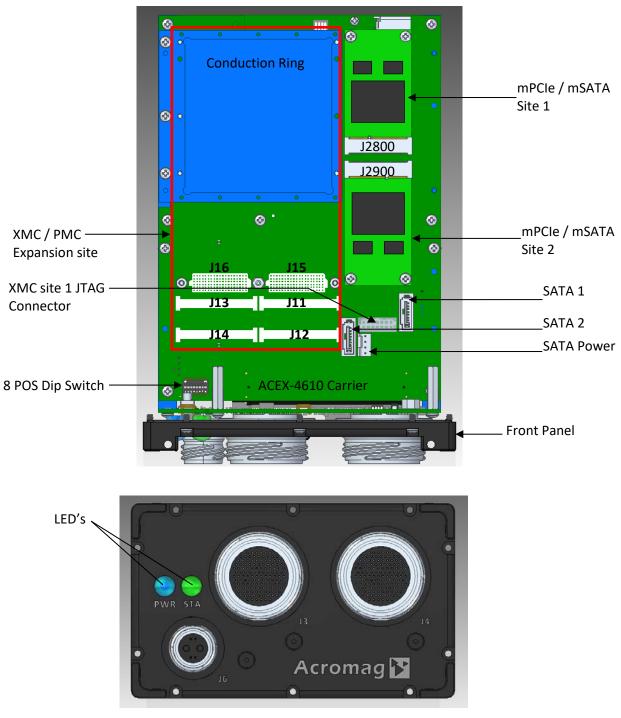

3.2 ARCX-4110 Block Diagrams

The ARCX 4110 is made up from 3 main components

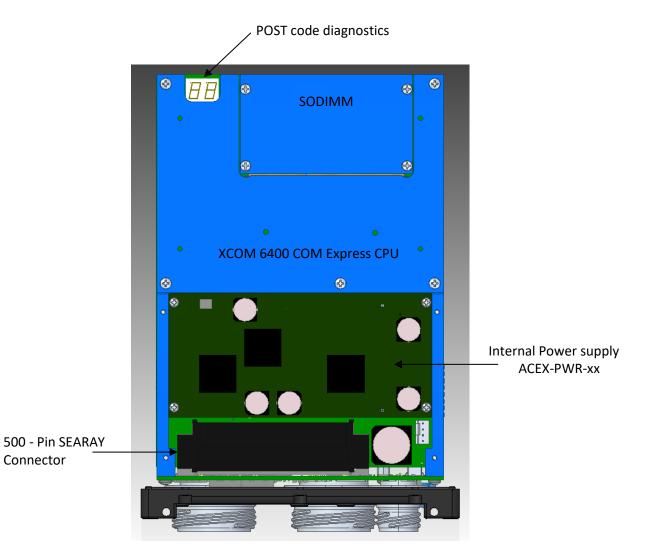

- XCOM-6400 COM Express CPU Module
- ACEX-4610 Carrier Board
- ACEX-FP-01 Front Panel Board (Standard)


The block diagrams for each component are shown below in Figs. 3.2.1, 3.2.2, and 3.2.3. These may be a helpful reference as you review the connector pinout tables in this section.

3.2.1 XCOM-6400 COM Express CPU Module Block Diagram


3.2.2 Model ACEX-4610 Carrier Block Diagram

3.2.3 Model ACEX-FP-01 Front Panel (standard) Block Diagram


3.2.4 ARCX-4110, Top view

Front Panel (front view)

- 22 -

3.2.5 ARCX-4110, Bottom view

3.3 Connector Pin Outs

J3 is a 130-pin size #23 38999 type connector, keyed – A. This connector provides access to the Rear I/O coming from the PMC/XMC site on the carrier board (ACEX-46xx). If a PMC P4/J4 connector is used/installed in site 1 on the carrier board than all 32 differential Pairs of Rear I/O signals are available thru J3. If an XMC card P15 connector is used/installed in site 1 of the carrier board than the UD (user defined signals) Row C and F of the XMC boards P16 connector as defined in VITA 42.0 signals are available.

Pin	Signal Name	Pin		Pin		Pin	Signal Name
1	J14 RIO0 P	34	J14 RIO14 P	67	J14 RIO26 P	100	GND
2	J14_RIO0_N	35	J14_RIO14_N	68	J14_RIO26_N	101	J16_SIO7_P
3	J14 RIO1 P	36	GND	69	GND	102	J16 SIO7 N
4	J14_RIO1_N	37	J14_RIO15_P	70	J14_RIO27_P	103	J16_SIO8_P
5	J14 RIO2 P	38	J14 RIO15 N	71	J14 RIO27 N	104	J16 SIO8 N
6	J14 RIO2 N	39	GND	72	J14 RIO28 P	105	GND
7	J14_RIO3_P	40	GND	73	J14_RIO28_N	106	J16_SIO9_P
8	J14 RIO3 N	41	J14 RIO16 P	74	GND	107	J16 SIO9 N
9	GND	42	J14_RIO16_N	75	J14_RIO29_P	108	J16_SIO10_P
10	J14 RIO4 P	43	J14 RIO17 P	76	J14 RIO29 N	109	J16 SIO10 N
11	J14 RIO4 N	44	J14 RIO17 N	77	GND	110	No Connect
12	GND	45	GND	78	J14_RIO30_P	111	J16_SIO11_P
13	J14 RIO5 P	46	GND	79	J14 RIO30 N	112	J16 SIO11 N
14	J14_RIO5_N	47	J14_RIO18_P	80	GND	113	GND
15	GND	48	J14 RIO18 N	81	J14 RIO31 P	114	J16 SIO12 P
16	J14 RIO6 P	49	GND	82	J14 RIO31 N	115	J16 SIO12 N
17	J14_RIO6_N	50	J14_RIO19_P	83	GND	116	GND
18	J14 RIO7 P	51	J14 RIO19 N	84	J16 SIOO GCLK P	117	J16 SIO13 P
19	J14_RIO7_N	52	J14_RIO20_P	85	J16_SIO0_GCLK_N	118	J16_SIO13_N
20	J14 RIO8 P	53	J14 RIO20 N	86	J16 SIO1 P	119	GND
21	J14 RIO8 N	54	GND	87	J16 SIO1 N	120	J16 SIO14 P
22	J14_RIO9_P	55	J14_RIO21_P	88	J16_SIO2_P	121	J16_SIO14_N
23	J14 RIO9 N	56	J14 RIO21 N	89	J16 SIO2 N	122	GND
24	J14_RIO10_P	57	J14_RIO22_P	90	J16_SIO3_P	123	J16_SIO15_P
25	J14 RIO10 N	58	J14 RIO22 N	91	J16 SIO3 N	124	J16 SIO15 N
26	GND	59	GND	92	J16 SIO4 P	125	J16 SIO16 P
27	J14_RIO11_P	60	J14_RIO23_P	93	J16_SIO4_N	126	J16_SIO16_N
28	J14 RIO11 N	61	J14 RIO23 N	94	GND	127	J16 SIO17 P
29	J14_RIO12_P	62	J14_RIO24_P	95	J16_SIO5_P	128	J16_SIO17_N
30	J14 RIO12 N	63	J14 RIO24 N	96	J16 SIO5 N	129	J16 SIO18 GCLK P
31	No Connect	64	GND	97	GND	130	J16 SIO18 GCLK N
32	J14_RIO13_P	65	J14_RIO25_P	98	J16_SIO6_P		
33	J14 RIO13 N	66	J14 RIO25 N	99	J16 SIO6 N		

J3 - Keyed-A (130-Pin size #23 38999 type Connector)

 ${f J4}$ is a 130-pin size #23 38999 type connector, keyed – B. This connector provides the standard peripheral I/O.

J4 - Keyed-B (130-Pin size #23 38999 type Connector)

Pin	Signal Name	Pin	Signal Name	Pin	Signal	Pin	Signal
1	DPB DDC CLOCK	34	DPC TMDS CLOCK SHIE	67	LAN1 DI3 P	100	WDTO
2	DPB_DDC_DATA	35	DPC_TMDS_D2_P	68	GND	101	GND
3	USBO N	36	DPC TMDS D2 N	69	GND	102	GND
4	USBO_P	37	DPB_HPD	70	+12V	103	UART_TX1_
5	DPC_DDC_CLOCK	38	DPB_TMDS_D2_SHIELD	71	+5V (SATA)	104	GND
6	DPC DDC DATA	39	DPB TMDS CLK P	72	LANO DIO N	105	+3.3V
7	DPB_TMDS_D1_SHIELD	40	DPB_TMDS_CLK_N	73	LAN0 DI1 N	106	VGA RED
8	DPB TMDS D0 P	41	GND	74	LAN0 DI2 N	107	VGA GND
9	DPB_TMDS_D0_N	42	USB2_GND	75	LAN0 DI3 N	108	GND
10	USB0_+5V	43	USB2_+5V	76	LAN1 DI0 N	109	GND
11	USBO GND	44	GND	77	LAN1 DI1 N	110	GND
12	USB1_GND	45	DPC_TMDS_CLK_P	78	LAN1 DI2 N	111	UART_RX0
13	DPC TMDS D0 P	46	DPC TMDS CLK N	79	LAN1 DI3 N	112	LINE IN R
14	DPC_TMDS_D0_N	47	DPC_TMDS_D2_SHIELD	80	UART_RX1	113	AUDIO GND
15	DPC_TMDS_D0_SHIELD	48	DPC_HPD	81	GND	114	LINE OUT R
16	DPB TMDS D1 P	49	No Connect	82	+5V (SATA)	115	+3.3V
17	DPB_TMDS_D1_N	50	No Connect	83	GND	116	VGA GREEN
18	DPB TMDS DO SHIELD	51	No Connect	84	VGA GND	117	VGA PWR
19	GND	52	No Connect	85	GND	118	VGA HSYNC
20	GND	53	No Connect	86	SATA0_TX_	119	VGA VSYNC
21	USB1 N	54	No Connect	87	SATA0 TX	120	UART TXO
22	USB1_P	55	No Connect	88	GND	121	UART_RX0_
23	DPC TMDS D1 SHIELD	56	No Connect	89	GND	122	LINE IN L
24	DPC_TMDS_D1_P	57	GND	90	GND	123	LINE OUT L
25	DPC_TMDS_D1_N	58	GND	91	UART_TX1_	124	AUDIO GND
26	DPB TMDS D2 P	59	+12V (SATA)	92	UART RX1	125	VGA SDATA
27	DPB_TMDS_D2_N	60	LANO DIO P	93	+5V (SATA)	126	VGA
28	DPB TMDS CLOCK SHIE	61	LANO DI1 P	94	+3.3V	127	GND
29	DPB_TMDS_PWR	62	LANO DI2 P	95	VGA BLUE	128	UART_TX0_
30	USB2_N	63	LANO DI3 P	96	VGA GND	129	GND
31	USB2 P	64	LAN1 DIO P	97	SATAO RX	130	No Connect
32	USB1_+5V	65	LAN1 DI1 P	98	SATA0_RX_		
33	DPC TMDS PWR	66	LAN1 DI2 P	99	GND		

J5 is a 130-pin size #23 38999 type connector, Keyed – C. This connector

provides access to the Rear I/O coming from the PMC/XMC site on the carrier board (ACEX-46xx). If a PMC P4/J4 connector is used/installed in site 2 on the carrier board than all 32 differential Pairs of Rear I/O signals are available thru J3. If an XMC card P15 connector is used/installed in site 2 of the carrier board than the UD (user defined signals) Row C and F of the XMC boards P16 connector as defined in VITA 42.0 signals are available.

Pin	Signal Name	Pin	Signal Name	Pin	Signal Name	Pin	Signal Name
1	J24_RIO0_P	34	J24_RIO14_P	67	J24_RIO26_P	100	GND
2	J24 RIO0 N	35	J24 RIO14 N	68	J24 RIO26 N	101	J26 SIO7 P
3	J24_RIO1_P	36	GND	69	GND	102	J26_SIO7_N
4	J24 RIO1 N	37	J24 RIO15 P	70	J24 RIO27 P	103	J26 SIO8 P
5	J24_RIO2_P	38	J24_RIO15_N	71	J24_RIO27_N	104	J26_SIO8_N
6	J24_RIO2_N	39	GND	72	J24_RIO28_P	105	GND
7	J24 RIO3 P	40	GND	73	J24 RIO28 N	106	J26 SIO9 P
8	J24_RIO3_N	41	J24_RIO16_P	74	GND	107	J26_SIO9_N
9	GND	42	J24 RIO16 N	75	J24 RIO29 P	108	J26 SIO10 P
10	J24_RIO4_P	43	J24_RIO17_P	76	J24_RIO29_N	109	J26_SIO10_N
11	J24_RIO4_N	44	J24_RIO17_N	77	GND	110	No connect
12	GND	45	GND	78	J24 RIO30 P	111	J26 SIO11 P
13	J24_RIO5_P	46	GND	79	J24_RIO30_N	112	J26_SIO11_N
14	J24 RIO5 N	47	J24 RIO18 P	80	GND	113	GND
15	GND	48	J24_RIO18_N	81	J24_RIO31_P	114	J26_SIO12_P
16	J24_RIO6_P	49	GND	82	J24_RIO31_N	115	J26_SIO12_N
17	J24 RIO6 N	50	J24 RIO19 P	83	GND	116	GND
18	J24_RIO7_P	51	J24_RIO19_N	84	J26_SIO0_GCLK_P	117	J26_SIO13_P
19	J24 RIO7 N	52	J24 RIO20 P	85	J26_SIO0_GCLK_	118	J26 SIO13 N
20	J24_RIO8_P	53	J24_RIO20_N	86	J26_SIO1_P	119	GND
21	J24_RIO8_N	54	GND	87	J26_SIO1_N	120	J26_SIO14_P
22	J24 RIO9 P	55	J24 RIO21 P	88	J26 SIO2 P	121	J26 SIO14 N
23	J24_RIO9_N	56	J24_RIO21_N	89	J26_SIO2_N	122	GND
24	J24 RIO10 P	57	J24 RIO22 P	90	J26 SIO3 P	123	J26 SIO15 P
25	J24_RIO10_N	58	J24_RIO22_N	91	J26_SIO3_N	124	J26_SIO15_N
26	GND	59	GND	92	J26_SIO4_P	125	J26_SIO16_P
27	J24 RIO11 P	60	J24 RIO23 P	93	J26 SIO4 N	126	J26 SIO16 N
28	J24_RIO11_N	61	J24_RIO23_N	94	GND	127	J26_SIO17_P
29	J24 RIO12 P	62	J24 RIO24 P	95	J26 SIO5 P	128	J26 SIO17 N
30	J24_RIO12_N	63	J24_RIO24_N	96	J26_SIO5_N	129	J26_SIO18_GCLK_P
31	No connect	64	GND	97	GND	130	J26_SIO18_GCLK_N
32	J24 RIO13 P	65	J24 RIO25 P	98	J26 SIO6 P		
33	J24_RIO13_N	66	J24_RIO25_N	99	J26_SIO6_N		

J5 - Keyed-C (130-Pin size #23 38999 type Connector)

J6 is a 6-pin size #12 38999 type connector, keyed - A. This connector is used to provide External input power 10V to 36V DC to the Carrier board (ACEX-46xx). This connector has a PWR_BTN line to allow the user use a power switch.

<u> J6 - Keyed-A (6-I</u>	in size #12 38999 type Connector)
Pin	Signal Name
1	PWR_BTN
2	Reserved (DO NOT USE)
3	INPUT_PWR
4	INPUT_GND
5	Reserved (DO NOT USE)
6	GND

J6 - Keyed-A (6-Pin size #12 38999 type Connector)

4.0 LED Function

4.1 Power LED The Blue Power LED indicates 10V-36V DC power is applied at the external power input.

4.2 Status LED

The Status LED is used to show the status of the system power state S3 and S4.

4.3 System power state definitions

System power state S3 the "sleep state":

All power is off except memory. If power is removed at this point you will lose your current session.

System power state S4 the "hibernate state":

Safe to remove power, will always resume the current session when power is reapplied.

There are three basic states indicated by the Status LED:

- Status LED steady "Green On" when the system is running.
- Status LED "Blink Green" when the system enters sleep state S3.
- Status LED will turn off when the system enters Sleep state S4 Hibernate.

Signal A	Activity	Status LED				
Sleep S3#	Sleep S4#	Green On	Blink Green	LED Off		
0	0			✓		
0	1		\checkmark			
1	1	~				

✓ - Condition of the Status LED
 0 - Represents a Low state

1 - Represents a High state

Note:

- 1. S3# and S4# are active low signals (# indicates active low).
- 2. It is ok to remove power from the system when the Status LED is off.
- 3. S5 State is not monitored by the LED however the Status LED will go off during a S5 or shutdown condition.

5.0 Switch Configuration

		itch (located on the Carrier board) Bold indicates default setting
1	ON	J15 JTAG voltage = 2.5Vdc
	OFF	J15 JTAG voltage = 3.3Vdc
2	ON	J25 JTAG voltage = 2.5Vdc
	OFF	J25 JTAG voltage = 3.3Vdc
3	ON	J25 MPRESENT#, Signal low , Enable (XMC Site 2)
	OFF	J25 MPRESENT# , Signal High, Disable (XMC Site 2)
4	ON	SER_MODE0 (see Serial Port Configuration below)
	OFF	SER_MODE0 (see Serial port configuration below)
5	ON	SER_MODE1 (see Serial Port Configuration below)
	OFF	SER_MODE1 (see Serial Port Configuration below)
6	ON	mPCIe/mSATA site 1 = mPCIe enabled
	OFF	mPCIe/mSATA site 1 = mSATA enabled
7	ON	mPCIe/mSATA site 2 = mPCIe enabled
	OFF	mPCIe/mSATA site 2 = mSATA enabled
8	ON	PCI_SEL_100 = 25, 50, 100MHz
	OFF	PCI_SEL_100 = 33, 66, 133MHz

Serial Port Configuration	SER_Mode0	SER_Mode1
Dual RS-232	0	0
COM0: RS-232 / COM1:RS-485	0	1
Dual RS-485	1	0
Low Power Shutdown	1	1

See the ACEX-4610/4620 Carrier user's manual for more information.

SW2 – (located on the Front panel PCB)

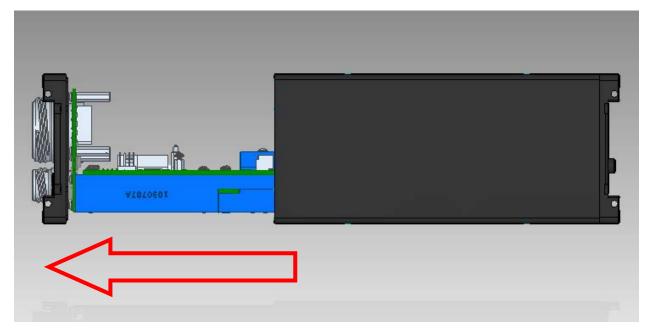

SW2 Reserved for future use.

SW2 - Bold indicates default factory settings		
SW2 - 1	ON	Reserved
	OFF	Normal operation
SW2 - 2	ON	Reserved
	OFF	Normal operation
SW2 - 3	ON	Reserved
	OFF	Normal operation
SW2 - 4	ON	Reserved
	OFF	Normal operation

6.0 Installing Expansion Modules, Memory and Battery.

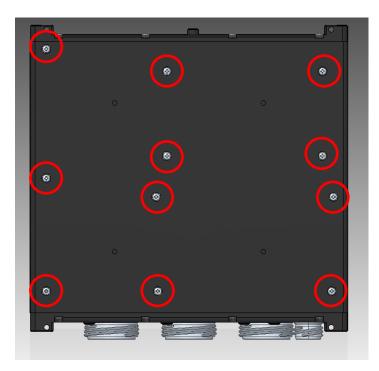
The ARCX 4000 series provides expansion sites for PMC or XMC expansion modules as well as m-SATA or mini PCIe expansion modules. This section describes how to install these modules. Although system memory and battery are low maintenance items this section will also show you how to access these items.

6.1 ARCX-4110, disassembly


1. Remove 8 screws (M2.5 x 6mm) from the bottom of the unit.

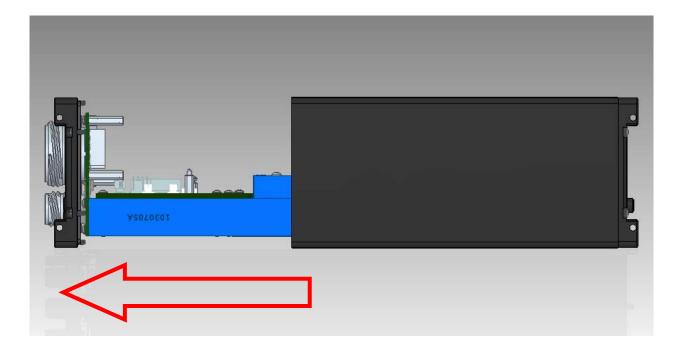
2. Remove the 10 screws (M2.5 x 6mm) that secure the front panel.

3. Carefully pull/slide the assembly out of the enclosure as shown.

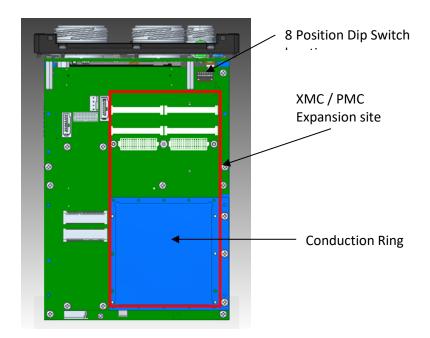


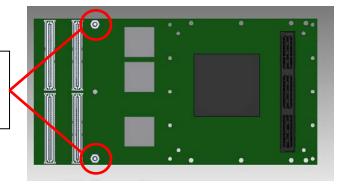
ARCX-4110 Disassembly is complete.

6.2 ARCX-4120, disassembly

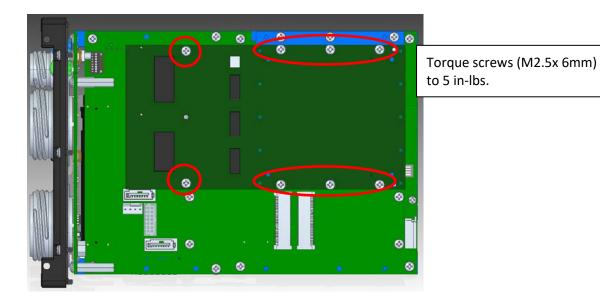

1. Remove 11 screws (M2.5 x 6mm) from the bottom of the unit.

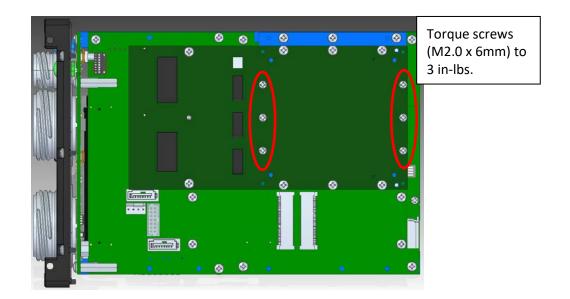
2. Remove the 12 screws (M2.5 x 6mm) that secure the front panel.


3. Carefully pull/slide the assembly out of the enclosure as shown.


ARCX-4120 Disassembly is complete.

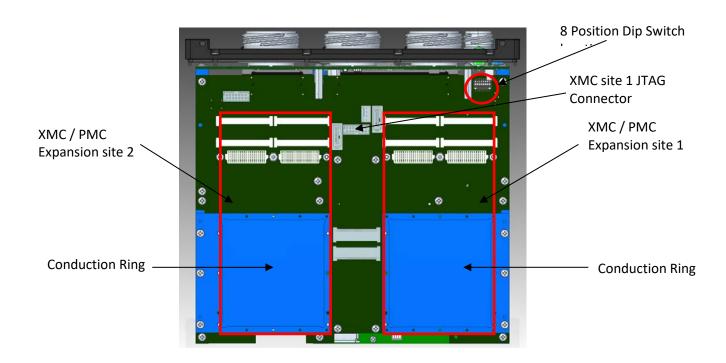
6.3 ARCX-4110, installing a PMC or XMC module


See the disassembly instructions in section 6.1 then proceed to step one.


NOTE: Remove these screws and standoffs from your XMC or PMC module if they exist.

1. Plug your module in into the expansion site and secure the module to the conduction ring with a quantity of 8 (M2.5 x 6mm) screws.

2. Install a quantity of 6 (M2.0 x 6mm) screws.



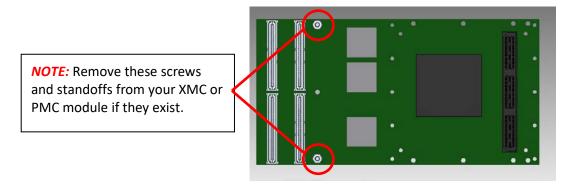
Installation of XMC or PMC module is complete.

Proceed to section 6.8 (ARCX-4110) to reassemble ARCX box.

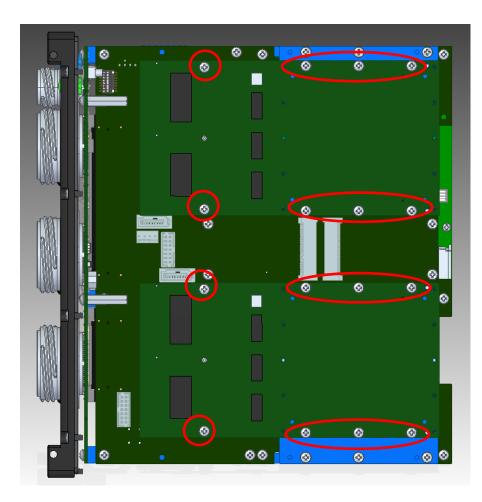
6.4 ARCX-4120, installing a PMC or XMC module

See the disassembly instructions in section 6.2 then proceed to step one.

XMC or PMC configuration:

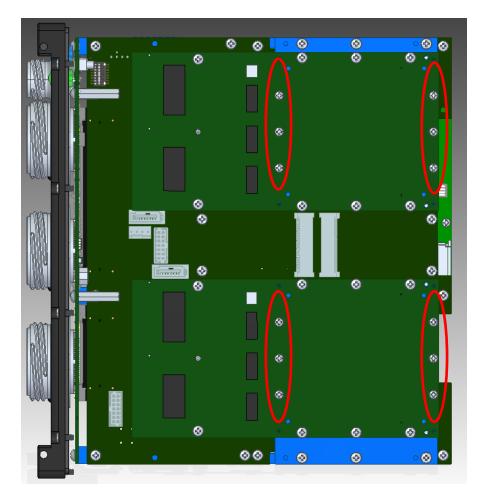

- A single XMC or PMC module can be used in site 1 or site 2.
- Two XMC modules can be installed in site 1 and site 2 at the same time.
- Two PMC modules can be installed in site 1 and site 2 at the same time.

Note:


If an XMC and a PMC module are used together, you must install the XMC card in site 1 and the PMC card in site 2.

See section **5.0 "Switch Configuration"** for information about J-tag voltage setting and the use of MPRESENT# signal.

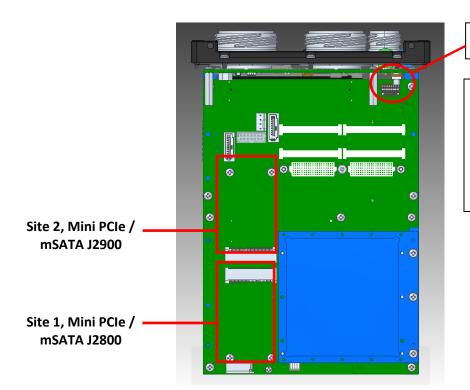
Generally the XMC module will drive the MPRESENT# signal low indicating an XMC module is present. If the module you are using does not support this feature then you will need to set SW3 to the "**on**" position to allow the system to detect your XMC module. When a PMC module is installed in site 2 SW3 must set to the "**off**" (default) position.


1. Plug your module in into the expansion site and secure the module in each site to the conduction ring with a quantity of 8 (M2.5 x 6mm) screws per site.

Torque screws (M2.5x 6mm) to 5 in-lbs.

ARCX 4000 SERIES

2. Install a quantity of 6 (M2.0 x 6mm) screws per site.

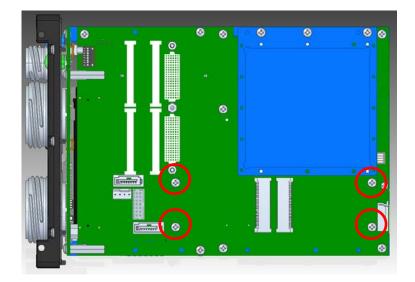


Torque screws (M2.0 x 6mm) to 3 in-lbs.

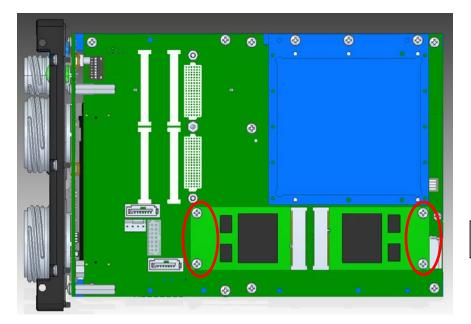
Installation of XMC or PMC module is complete.

Proceed to section 6.9 (ARCX-4120) to reassemble ARCX box.

6.5 ARCX-4110 OR ARCX-4120, installing a Mini PCIe or mSATA module See the disassembly instructions in section 6.1(ARCX-4110) or 6.2 (ARCX-4120) then proceed to step one.



8 Position Dip Switch


Note:

See section **5.0 "8 Position Dip Switch Configuration"** set switch 6 and/or 7 to the correct setting for your module type.

1. Remove the 2 (M2.5 x 4mm) screws from each expansion site standoff.

Torque to 5 in-lbs.

2. Install your Mini PCIe or mSATA module and secure with the provided screws (M2.5 x 4mm).

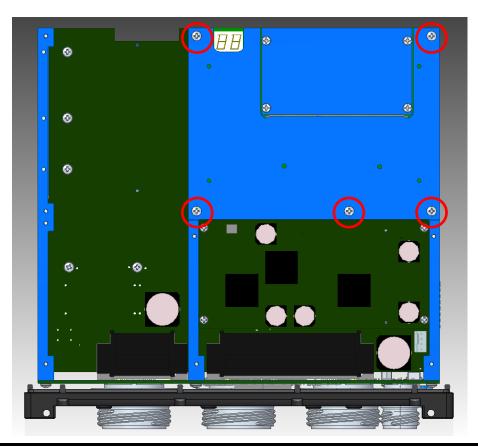
Installation for Mini PCIe or mSATA module is complete.

Proceed to section 6.8 (ARCX-4110) or 6.9 (ARCX-4120) to reassemble ARCX box.

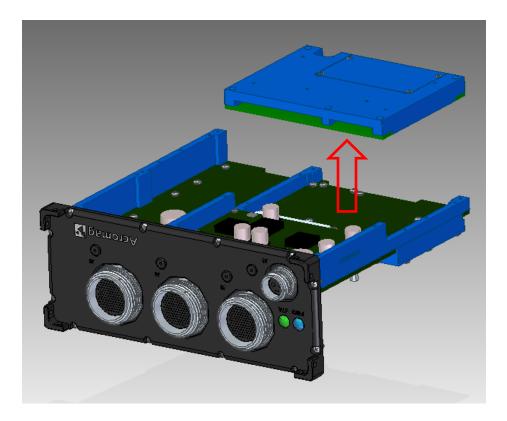
ARCX 4000 SERIES

6.6 ARCX-4110 or ARCX-4120, memory access

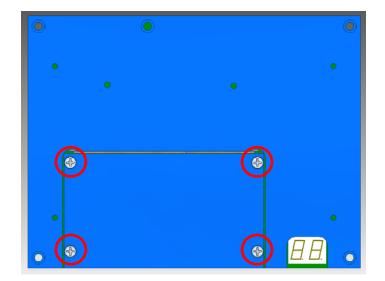
There are two SODIMM sockets located on the XCOM-6400 CPU module. This section describes how to access the memory modules. The ARCX 4000 series supports a maximum of 16GB (2 x 8GB SODIMM) of system memory.

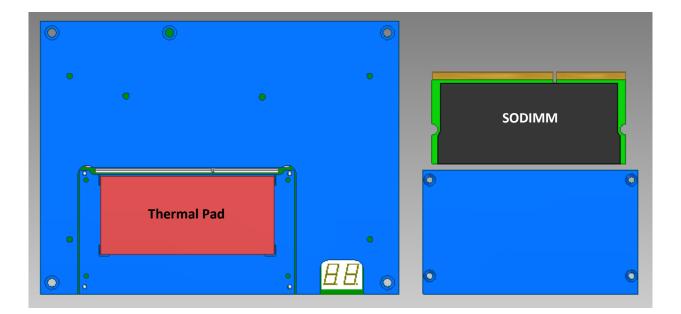

Single/Dual Rank	DIMM Capacity	DRAM Organization	# DRAM Devices	# Row/Col Address Bits	# of Banks Inside DRAM	Page Size
Single	1GB	128M x8	9	14/10	8	8К
Single	2GB	256M x8	9	15/10	8	8К
Single	4GB	512M x8	9	16/10	8	8К
Dual	2GB	128M x8	18	14/10	8	8К
Dual	4GB	256M x8	18	15/10	8	8К
Dual	8GB	512M x8	18	16/10	8	8K

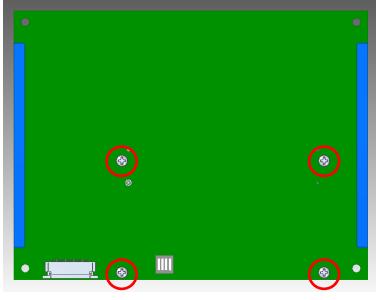
Single or Dual Ranked x8 un-buffered ECC 204-pin SODIMMs using 1Gb, 2Gb, or 4Gb DRAM technologies.

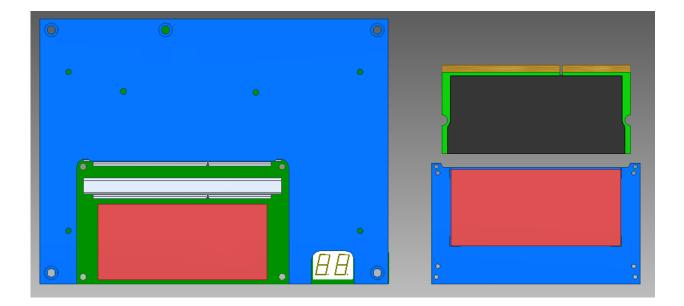

SODIMM Memory Module Removal

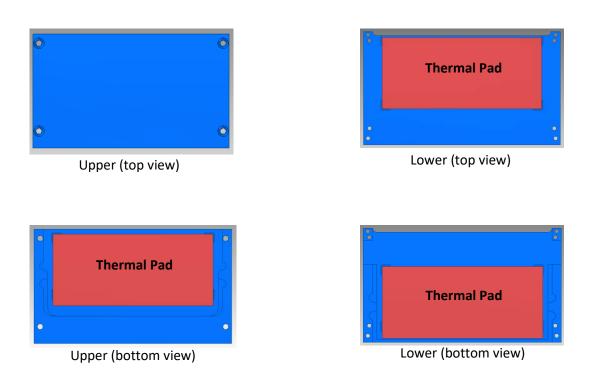
See the disassembly instructions in section 6.1(ARCX-4110) or 6.2 (ARCX-4120) then proceed to step one.


1. Remove the XCOM-6400 CPU Module from the Carrier by removing the 5 (M2.5 x 6mm) screws.


2. Carefully lift the XCOM-6400 CPU module up and away from the carrier (ACEX-46xx) board.

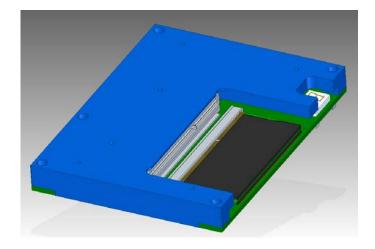

3. Remove the 4 (M2.0 x 8mm) Flat Head screws that secure the top of the memory hold down mechanism (Secure Conduction Memory Latch Technology).


4. Remove the top of the hold down mechanism (top SODIMM site) and the memory module.

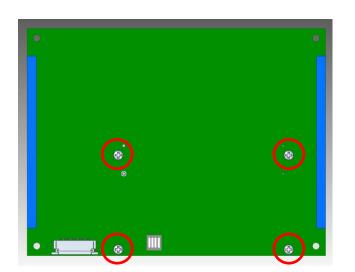

5. Remove the 4 (M2.0 x 6mm) Pan Head screws on the bottom side of the XCOM-6400 CPU module.

Bottom side of the XCOM-6400 CPU module 6. Remove the bottom of the hold down mechanism (bottom SODIMM Site) and the memory module.

SODIMM Memory Module Removal is complete.

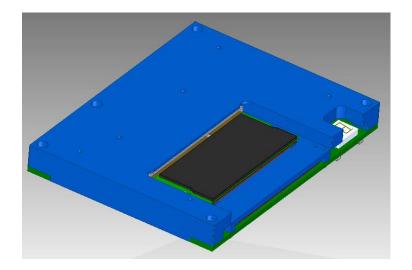


"Secure conduction memory latch technology" hold down mechanism

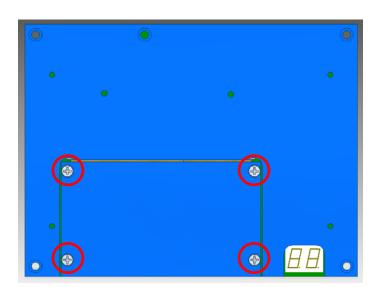

ARCX 4000 SERIES

Installing SODIMM memory and reassembling the "Secure Conduction Memory Latch Technology" hold down mechanism.

1. Install SODIMM into the lower memory socket.

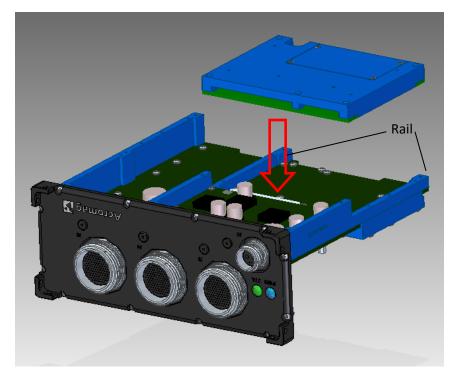


 Align the notch on the bottom of the lower hold down mechanism with the notch opening on the memory module, hold in place while turning the XCOM-6400 CPU module over and install the 4 (M2.0 x 6mm) Pan Head screws.

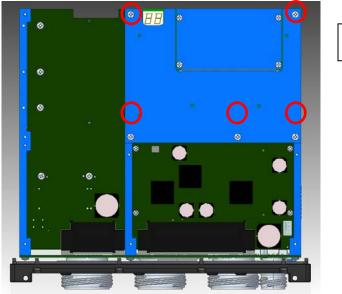


Bottom side of the XCOM-6400 CPU module Torque screws (M2.0 x 6mm) to 3 in-lbs.

3. Install SODIMM into the Upper memory socket.



4. Align the notch on the bottom of the upper hold down mechanism with the notch opening on the memory module, hold in place and install the 4 (M2.0 x 8mm) Flat Head screws



Torque screws (M2.0 x 6mm) to 3 in-lbs.

5. Carefully attach the XCOM-6400 CPU module to the carrier by aligning the XCOM CPU to the Rails on the ACEX carrier and press into place. (This mates the CPU to the carrier via the COM express connector)

6. Install 5 (M2.5 x 8mm) screws to secure the XCOM-6400 CPU module to the Carrier board (ACEX-46xx).

Torque to 5 in-lbs.

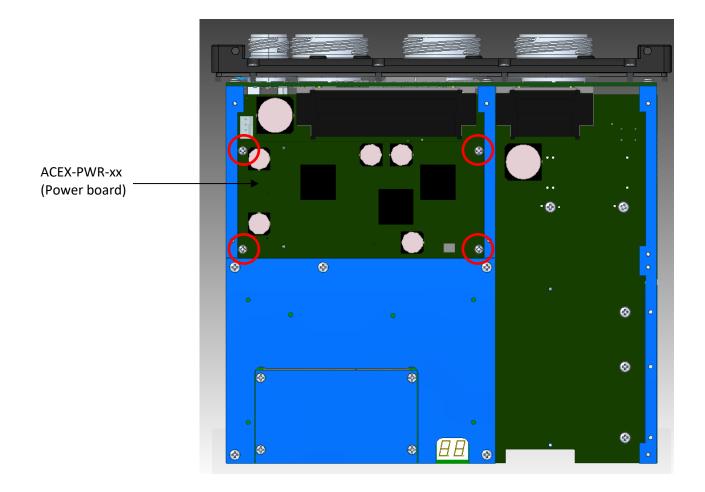
SODIMM reassembly is

Proceed to section 6.8 (ARCX-4110) or 6.9 (ARCX-4120) to reassemble ARCX box.

complete.

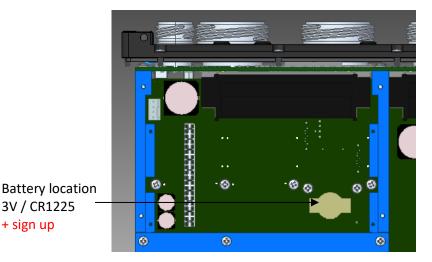
6.7 ARCX-4110 or ARCX-4120, battery access

See the disassembly instructions in section 6.1(ARCX-4110) or 6.2 (ARCX-4120) then proceed to step one.

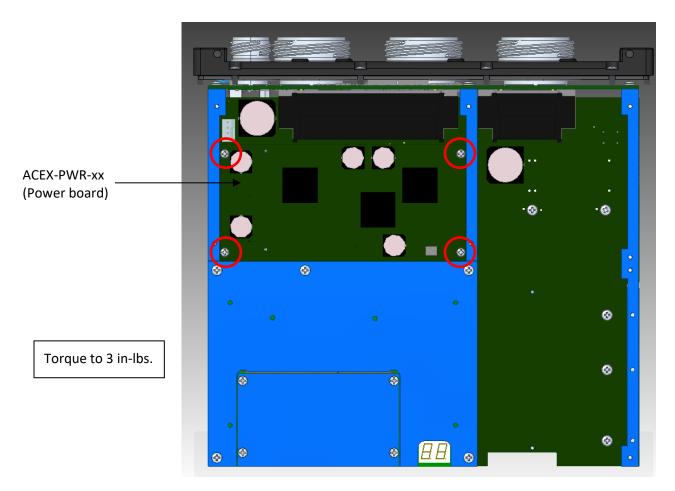

Replacing the battery:

The battery is located on the bottom side of the carrier board (ACEX-46xx) under the ACEX-PWR-xx board.

Battery: CR1225


3V Lithium Battery

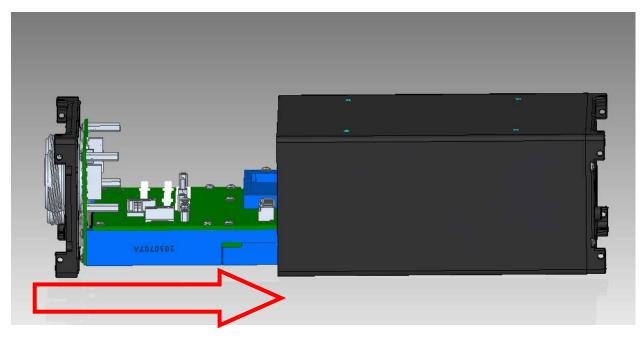
1. Remove the 4 (2M x 6mm) screws from the power board.



ARCX 4000 SERIES

2. Remove the power board by lifting straight up.

3. Reinstall the power board and secure with 4 (M2.0 x 6mm) screws.



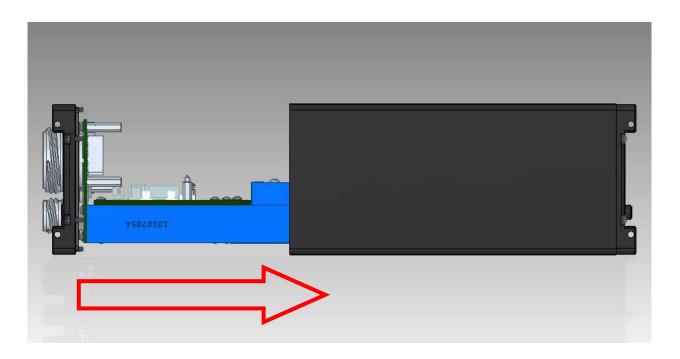
Battery replacement complete

Proceed to section 6.8 (ARCX-4110) or 6.9 (ARCX-4120) to reassemble ARCX box.

6.8 ARCX-4110, assembly

1. Carefully slide the ARCX-4110 assembly back into the enclosure

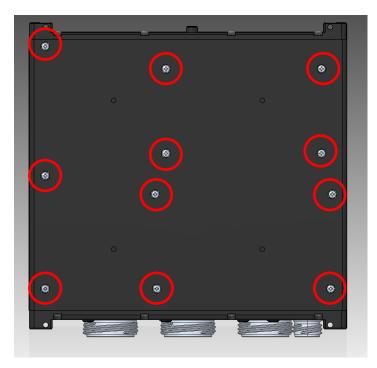
2. Install the 10 screws (M2.5 x 6mm) that secure the front panel only hand tight.


- 3. Install the 8 screws (M2.5 x 6mm) on the bottom of the unit only hand tight.

- 4. Torque the 10 screws that secure the front panel to 5in-lbs.
- 5. Torque the 8 screws on the bottom of the unit to 6in-lbs.

Reassembly of the ARCX-4110 is complete.

6.9 ARCX-4120, assembly


1. Carefully slide the ARCX-4120 assemblies back into the enclosure.

2. Install the 12 screws (M2.5 x 6mm) that secure the front panel only hand tight.

3. Install the 11 screws (M2.5 x 6mm) on the bottom of the unit only hand tight.

- 4. Torque the 12 screws that secure the front panel to 5in-lbs.
- 5. Torque the 11 screws on the bottom of the unit to 6in-lbs.

Reassembly of the ARCX-4120 is complete.

7.0 SERVICE AND REPAIR

7.1 Service and Repair Assistance

Acromag has automated diagnostic and test equipment that thoroughly checks the performance of suspect boards. Furthermore, when any repair is made, the board is first tested, then placed in a burn-in room at an elevated temperature, and finally retested before return shipment to the customer.

Please refer to Acromag's Service Policy Bulletin or contact Acromag for complete details on how to obtain parts or return parts for repair.

7.2 Preliminary Service Procedure

CAUTION: POWER MUST BE TURNED OFF BEFORE SERVICING BOARDS

Before beginning repair, be sure that all of the procedures in the "Preparation for Use" section have been followed. Also, refer to the documentation of your carrier board to verify that it is correctly configured. Replacement of the board with one that is known to work correctly is a good technique for isolating a faulty part.

7.3 Where to Get Help

If you continue to have problems, your next step should be to visit the Acromag worldwide web site at <u>www.acromag.com</u>. Our web site contains the most up-to-date product and software information.

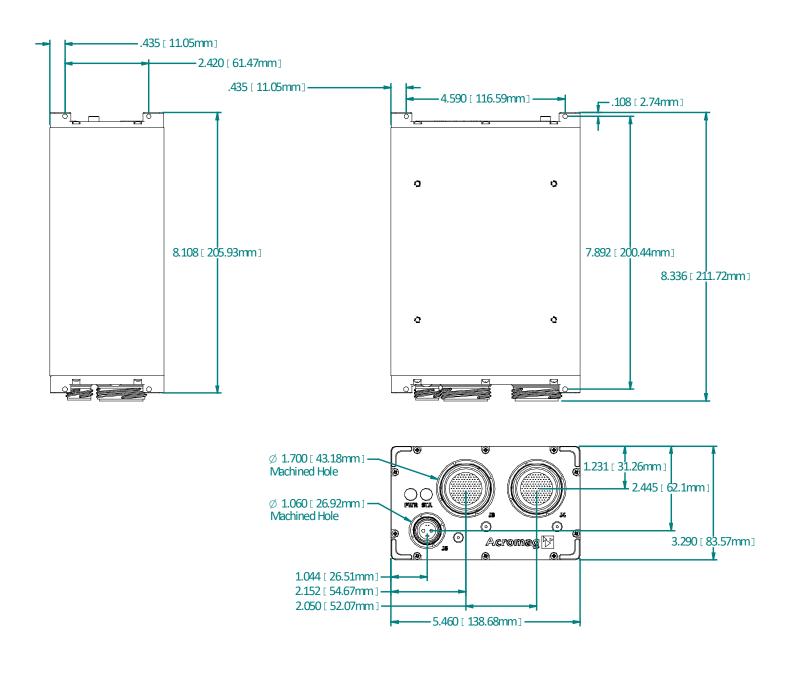
Go to the "Support" tab to access:

- Application Notes
- Frequently Asked Questions (FAQ's)
- Product Knowledge Base
- Tutorials
- Software Updates/Drivers

Acromag's application engineers can also be contacted directly for technical assistance via email, telephone, or FAX through the contact information listed below. Note that an email question can also be submitted from within the Knowledge Base or directly from the "Contact Us" tab. When needed, complete repair services are also available.

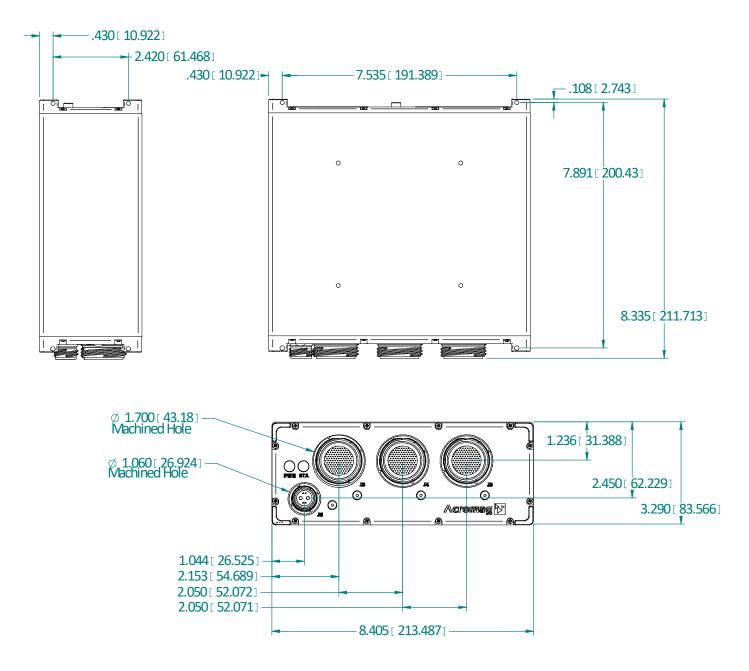
- Email: <u>solutions@acromag.com</u>
- Phone: 248-624-1541
- Fax: 248-624-9234

8.0 SPECIFICATIONS

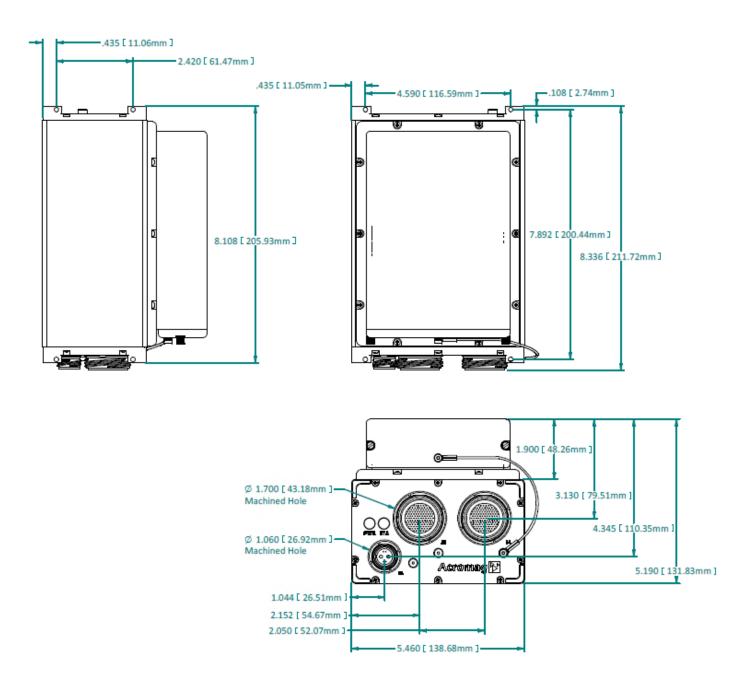

8.1 Physical

ARCX-4120-XX:	
Height:	3.29 in (83.57 mm)
Width:	8.41 in (213.49 mm)
Depth:	8.34 in (211.71 mm)
ARCX-4121-XX:	
Height:	5.19 in (131.70 mm)
Width:	8.41 in (213.49 mm)
Depth:	8.34 in (211.71 mm)
ARCX-4110-XX:	
Height:	3.29 in (83.57 mm)
Width:	5.46 in (138.68 mm)
Depth:	8.34 in (211.71 mm)
ARCX-4111-XX:	
Height:	5.19 in (131.70 mm)
Width:	5.46 in (138.68 mm)
Depth:	8.34 in (211.71 mm)

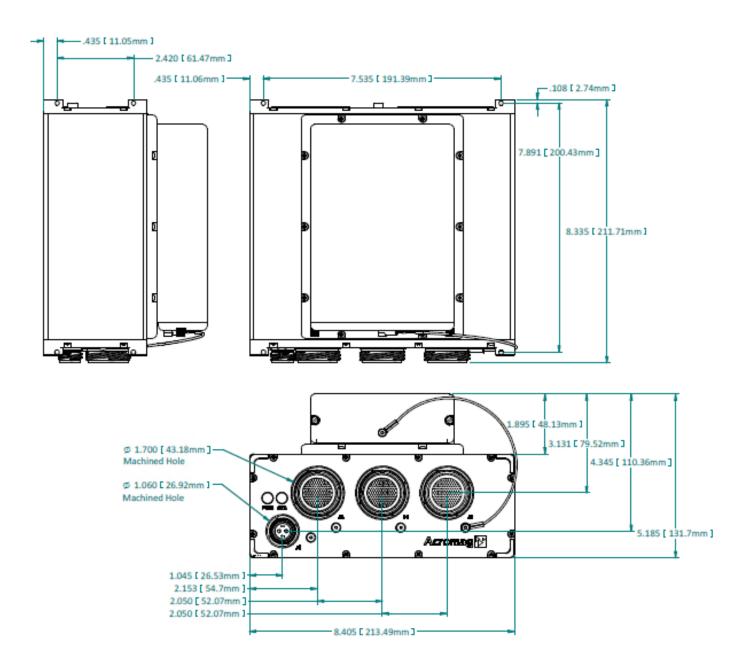
Unit Weight (does not include PMC/XMC modules or shipping material):


٠	ARCX-4120-XX	7.1 lbs. (3.58 kg)
٠	ARCX-4121-XX	10.4 lbs. (4.72 kg)
٠	ARCX-4110-XX	5.6 lbs. (2.54 kg)
•	ARCX-4111-XX	8.1 lbs. (3.67 kg)

Mechanical Dimensions ARCX-4110-XX



ARCX 4000 SERIES


Mechanical Dimensions ARCX-4120-XX

Mechanical Dimensions ARCX-4111-XX

Mechanical Dimensions ARCX-4121-XX

8.2 Environmental Considerations

Summarized below are the operating temperature range, airflow and other environmental requirements and applicable standards for the ARCX 4000 series. ATMD-02 (Air cooled heatsink) and ATMD-03 (Cold Plate 8" x 10") are available accessories. See page 82 for additional details.

8.2.1 Operating Temperature and Airflow Requirements

Below are graphs for the 4110 and 4120 series of products. The graphs indicate the maximum allowable ambient air temperature for air cooled applications and the maximum allowable cold plate temperature for cold plate applications.

HOW TO USE THE GRAPHS

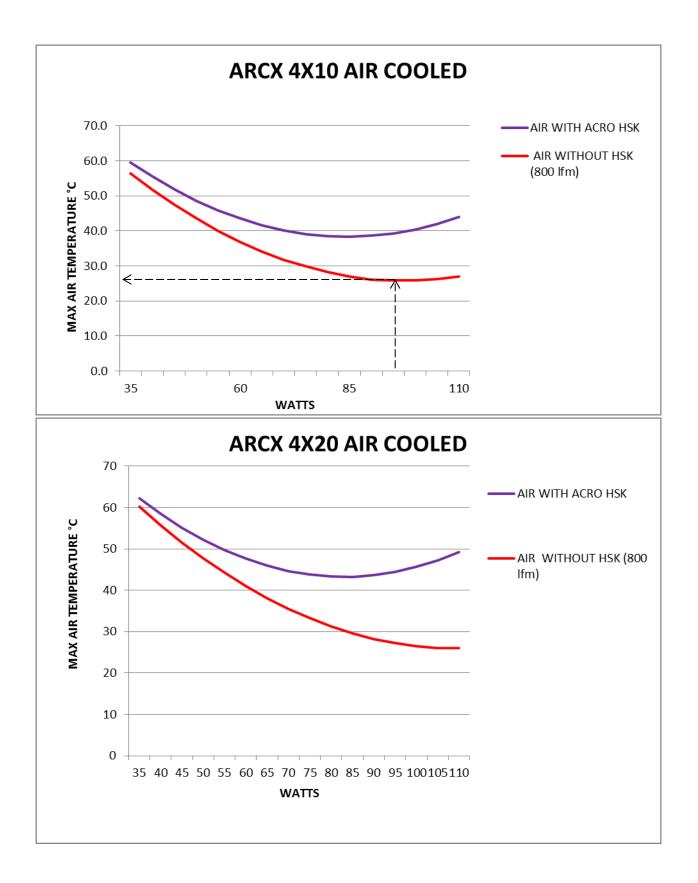
In all cases, it is the area under the curve(s) that is the acceptable operating range for the intended end application.

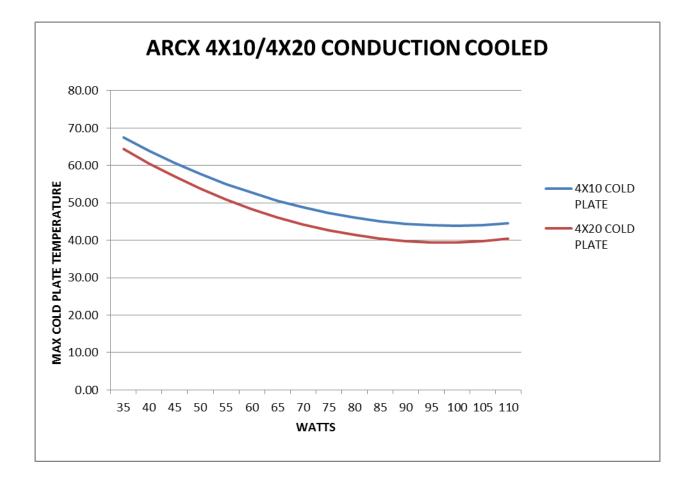
Example: The end application will have a total of 95W in the ARCX-4110 enclosure with no additional cooling assistance other than 800lfm of air provided by the user via a fan or by some other air flow resource.

See power tables at the end of this document to help estimate power consumption. The total power would include CPU power plus all other PMC/XMC, etc. boards in the enclosure. The power consumption can vary widely depending on the end application. The user should measure the input power with his end application running to get a better estimate

Using the graph labeled "ARCX 4110 AIR COOLED" pick the 95W mark on the horizontal axis (WATTS), draw a line up to the AIR WITHOUT HSK line. From where it intersects that line, draw a line to the left to where it intersects the vertical axis MAX AIR TEMPERATURE. This will indicate that with 95W of power the maximum air temperature allowed is approximately 25C. The user must keep the air at or below 25C for a 95W air cooled application. This application will be limited to "room" temperatures and below. Additional cooling capability must be added if the operating temperature is to be above room temperature.

Disclaimer: These graphs are believed to be conservative. They are believed to indicate typical to worse case customer applications. It is the end user's responsibility to verify the end application power consumption in the ARCX enclosure. Acromag does not take any responsibility for the user applications.


AIR vs COLD PLATE APPLICATIONS


There are two curves that are usable for air applications. It should be understood that the ARCX enclosure was designed to be a conduction cooled enclosure. The performance is limited using air cooling only. There is a forced air heat sink assembly (ATMD-02) available for users that would like to purchase a means to cool the enclosure. Refer to the curves labeled "AIR WITH ACRO HSK" For the previous example; using the Acromag forced air heat sink accessory would widen the allowable "ARCX-4110 Air Cooled" ambient temperature at 95W to approximately 40C. If the environment is relatively cool like a server room, then it is possible that the enclosure will work without any additional cooling assistance. In the end application it will be the user's responsibility to validate whether there is enough cooling capacity for the wattage being drawn.

The ARCX was designed to be a conduction cooled enclosure. The user is responsible for mounting the ARCX to a cold plate and maintaining the cold plate temperature. The cold plate can be a water cooled plate like the (ATMD-03) or to any surface that will continuously conduct the heat away from the ARCX enclosure. Controlling the cold plate temperature is essential in keeping the ARCX system within its operating temperature range.

The preferred mounting method is with the bottom of the ARCX enclosure mounted directly to the cold plate. The ARCX is capable of being mounted on the other three sides but it will be the user's responsibility to verify the system is being properly cooled. The enclosure was designed to conduct heat away from any of the four sides. The heat is concentrated on the bottom so that is the preferred mounting surface whenever possible. All the graphs provided are with the bottom of the system mounted to the cooling device.

The graphs are non-linear and should not be misapplied. Only the graph with the intended cooling method should be considered.

Note – The ARCX is capable of applications above 110 Watts.

The preferred method above 110W is with the CONDUTION COLD PLATE where the cold plate temperature can be controlled / maintained. Air cooled applications above 110W are also conceivable.

Consult factory for any applications beyond 110 watts. The graphs **<u>cannot</u>** be used to extrapolate beyond 110W.

8.3 Power Requirements

Minimum input Voltage +10V DC

Maximum input Voltage +36V DC

Note: The Maximum current cannot exceed 15 Amps.

8.31 POWER ESTIMATION TABLES

The following tables can be used to estimate power consumption.

ARCX-4110 Typical Con Requirements	figuration	ns & Their	r Power					
Configuration	i7 CPU Power (Watts)	XMC/ PMC (Opt.) (Watts)	Ext. Fan Acc. (Opt. (Watts)	mSATA or mPCIe #1 (Opt. (Watts)	mSATA or mPCIe #2 (Opt. (Watts)	Power Conv. Dissip. @85% Eff. (Watts)	Total Input Power Req. (Watts)	Total Power Dissip. Enclo. (Watts)
i7 CPU maximum, XMC @ maximum, two mSATA or mPCIe, with fan accessory	47.0	25.0	16.8	5.0	5.0	17.4	116.2	99.4
i7 CPU maximum, XMC @ maximum, two mSATA or mPCIe, no fan accessory	47.0	25.0	0.0	5.0	5.0	14.5	96.5	96.5
i7 CPU maximum, XMC @ maximum, one mSATA or mPCIe, no fan accessory	47.0	25.0	0.0	5.0	0.0	13.6	90.6	90.6
i7 CPU maximum, no XMC, one mSATA or mPCIe, no fan accessory	47.0	0.0	0.0	5.0	0.0	9.2	61.2	61.2
i7 CPU limited @ 25 watts, no XMC, one mSATA or mPCIe, no fan accessory	25.0	0.0	0.0	5.0	0.0	5.3	35.3	35.3

ARCX-4120 Typical Co Requirements	onfigurat	ions & T	heir Pow	er					
Configuration	i7 CPU Power (Watts)	#1 XMC/ PMC (Opt.) (Watts)	#2 XMC/ PMC (Opt.) (Watts)	Ext. Fan Acc. (Opt.) (Watts)	mSATA or mPCIe #1 (Opt.) (Watts)	mSATA or mPCIe #2 (Opt.) (Watts)	Power Conv. Dissip. @85% Eff. (Watts)	Total Input Power Req. (Watts)	Total Power Dissip Encl. (Watts)
i7 CPU maximum, Two XMC's @ maximum, two mSATA or mPCIe, with fan accessory	47.0	25.0	25.0	25.2	5.0	5.0	23.3	155.5	130.3
i7 CPU maximum, Two XMC's @ maximum, two mSATA or mPCIe, no fan accessory	47.0	25.0	25.0	0.0	5.0	5.0	18.9	125.9	125.9
Power (i7 CPU maximum, Two XMC's @ maximum, one mSATA or mPCIe, no fan accessory	47.0	25.0	25.0	0.0	5.0	0.0	18.0	120.0	120.0
i7 CPU maximum, XMC #2 @ maximum, one mSATA or mPCIe, no fan accessory	47.0	0.0	25.0	0.0	5.0	0.0	13.6	90.6	90.6
i7 CPU maximum, no XMC's, one mSATA or mPCIe, no fan accessory	47.0	0.0	0.0	0.0	5.0	0.0	9.2	61.2	61.2
i7 CPU limited @ 25 watts, no XMC's, one mSATA or mPCIe, no fan accessory	25.0	0.0	0.0	0.0	5.0	0.0	5.3	35.3	35.3

8.4 Other Environmental Requirements

8.4.1 Relative Humidity

The range of acceptable relative humidity is 5% to 95% non-condensing.

8.4.2 Storage Temperature

The range of acceptable storage temperatures is -40° C to $+85^{\circ}$ C.

8.4.3 Vibration (operating and Non-operating)

MIL-STD-810G, Method 514.6

Procedure I (General Vibration)

Category 20 (Ground vehicles/ground mobile)

8-500Hz, Sinusoidal 5Grms X, Y and Z axis. 1hr per axis (15-minute sweep up / 15-minute sweep down)

8.4.4 Mechanical Shock (operating and Non-operating)

MIL-STD-810G, Method 516.6
Procedure I (functional Shock)
50g, 11ms 1/2 sine 3 positive/negative per axis
(18 drops)

8.4.5 Ingress Protection Water/Dust proof

IEC 60529, IP67

- 6 Totally protected against dust
- 7 Protection against the effect of immersion between 15cm and 1m

8.4.6 CE Marked

EMC Directive 204/108/EC

Immunity per EN 61000-6-2:

Electrostatic Discharge Immunity (ESD), per IEC 61000-4-2. Radiated Field Immunity (RFI), per IEC 61000-4-3. Electrical Fast Transient Immunity (EFT), per IEC 61000-4-4. Surge Immunity, per IEC 61000-4-5. Conducted RF Immunity (CRFI), per IEC 61000-4-6. **Emissions per EN 61000-6-4:** Enclosure Port, per CISPR 16. Low Voltage AC Mains Port, per CISPR 16. Telecom / Network Port, per CISPR 22. **Note:** This is a Class A product, excluding the use of DVI interface.

RoHS Directive 2011/65/EU

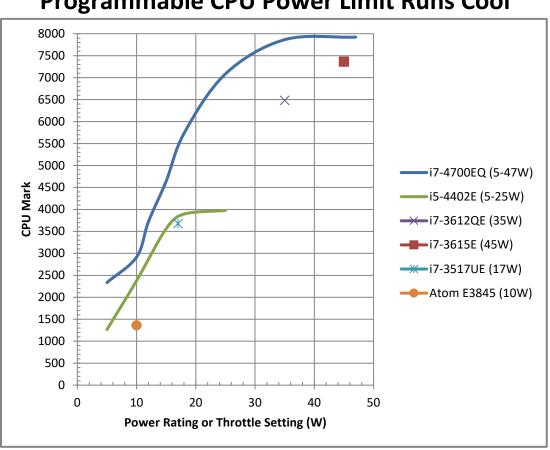
In compliance per EN 50581.

8.4.7 FCC US/Canada

FCC Part 15, Class A Digital Device.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Note: This is a Class A product, excluding the use of DVI interface.


8.5 Reliability Prediction

Mean Time Between Failure.....MTBF = 110,080 hours @ 25C,

Using MIL-HDBK-217F, Notice 2.

Appendix

Programmable Power Limits

Programmable CPU Power Limit Runs Cool

Acromag's XCOM-6400, ARCX units feature programmable power limits, allowing the user to 'dial-down' the maximum power consumption of the CPU in systems where power is a concern. The graph above shows that the i7-4700EQ CPU outperforms other available embedded Intel CPU's at every power point from 5W - 47W, even the i5-4402E.

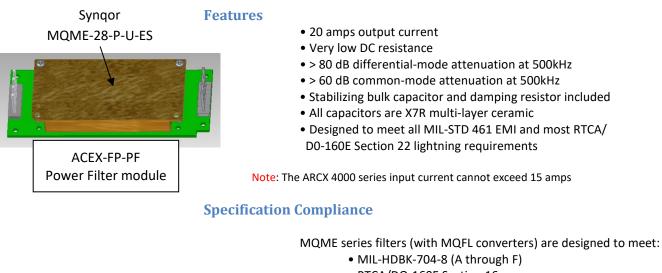
By simply programming a lower power limit in the BIOS setup, the 47W i7-4700EQ CPU can be used in applications where less power is available, or heat removal is an issue. This is accomplished by the CPU automatically under clocking its frequency to maintain a power level at the set limit¹.

Note: that once the minimum frequency of 800MHz is reached that the programmed limit could be exceeded. Extremely large workloads have a realistic minimum power of around 20W. However light to medium workloads can effectively maintain a power limit as low as 5-10W.

There are two programmable CPU limits. These are the long-term average Power Limit 1 (PL1) and the short-term Power Limit 2 (PL2). Depending on a windowed Power Limit 1 Time 'constant' Tau, the CPU can spend a short time above power level PL1 up to a maximum of PL2, allowing a significant performance boost for short workloads. If the CPU power remains above PL1 at the end of this time the power is then limited back to PL1. The power must drop below the PL1 limit before it allowed to increase back to PL2 again. For time spent above PL1 an equivalent amount of time must be spent below PL1 in order for it to rise again to PL2. The maximum time could be as much 2.5x the value of Tau.

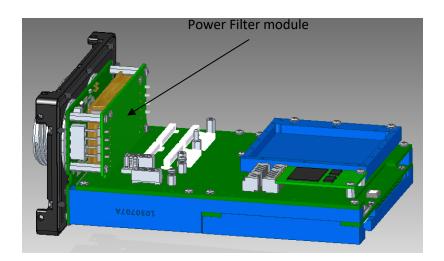
The default values for each CPU are as follows:

CPU	PL1	PL2	Tau
17-4700EQ	47W	59W	28 seconds
I5-4402E	25W	31W	28 seconds


PL1 and PL2 can be programmed in watts to any value below the default. Entering a value above the default will result in the default value being used. Entering 0 also results in the default value being used.

Tau can be programmed to any number of seconds up to 256, however it is recommended by Intel to always use the default value of 28. This value maximizes the effectiveness of the short-term performance boost while ensuring that the life of the part is not jeopardized by spending too much time above PL1.

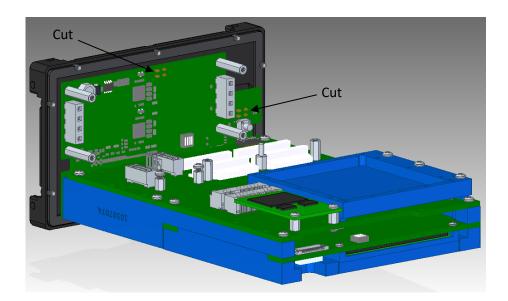
More details about programming these power limits using the BIOS setup utility are provided in *The Acromag Core BIOS Manual.*


Power Filter (Optional Accessory) installation

This process is the same for ARCX-4110 or ARCX-4120

- RTCA/DO-160E Section 16
- MIL-STD-1275B
- DEF-STAN 61-5 (part 6)/5
- MIL-STD-461 (C, D, E)
- RTCA/DO-160E Section 22

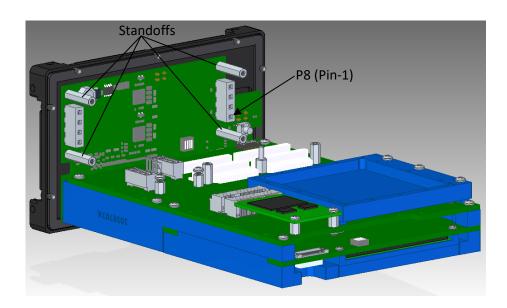
The Power filter component is a SynQor P/N MQME-28-P-U-ES (www.synqor.com)


Note: The power filter is not available when using the Front Panel with Mezzanine option. The power Filter is already installed on the ARCX-41XX-PF models. See ordering information.

ARCX 4000 SERIES

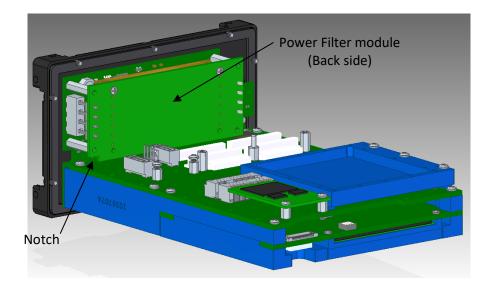
See the disassembly instructions in section 6.1(ARCX-4110) or 6.2 (ARCX-4120) then proceed to step one.

1. Before installing the power filter module the power filter bypass jumpers need to be cut or removed, this allows power to flow through the power filter. Using wire cutters, cut 4 power filter bypass Jumpers JP1, JP2, JP3, JP4 as illustrated below.

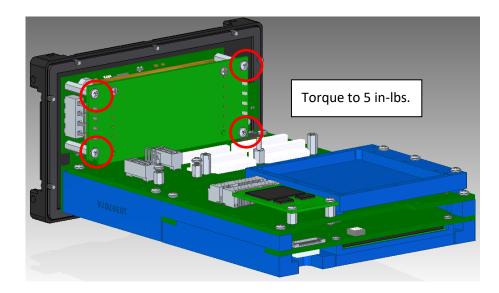


USER'S MANUAL

ARCX 4000 SERIES


2. Install the power filter board onto the front panel board by aligning Pin 1 of P1 and P2 (located on the power filter board) with Pin 1 of J7 and J8 (located on the front panel board) and press into place until the power filter board is seated on the standoffs on located on the front panel board.

P7 (Pin- 1)



Notch

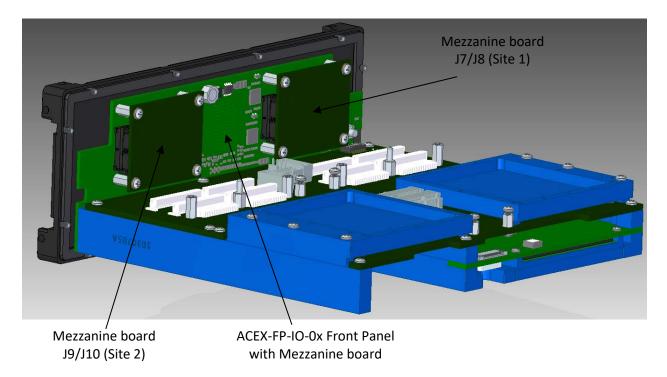
Note: Notice the location of the notch on the power filter board to ensure correct orientation.

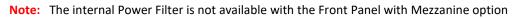
3. Secure with 4 screws (M2.5 x 6mm).

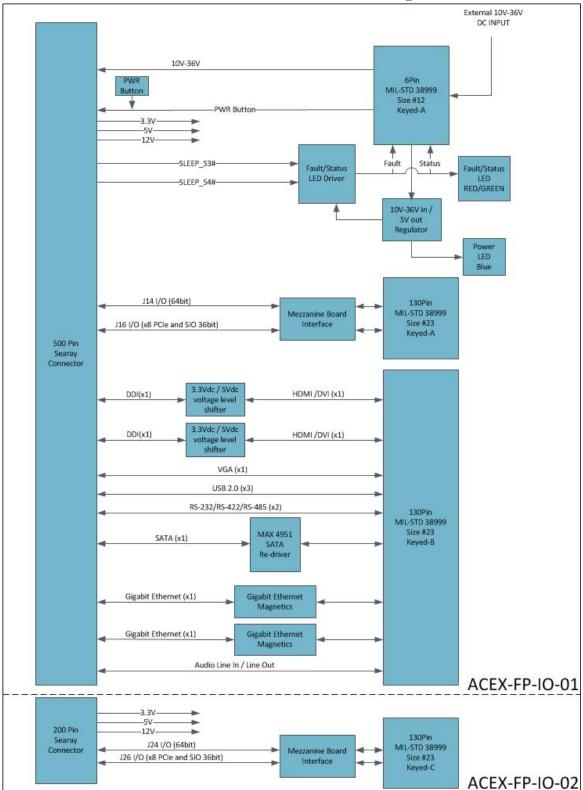
Power Filter installation is complete.

Proceed to section 6.8 (ARCX-4110) or 6.9 (ARCX-4120) to reassemble ARCX box.

Front Panel with Mezzanine Option

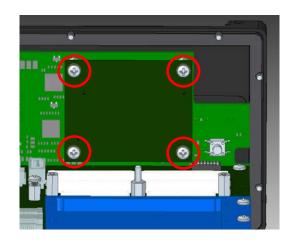

The Front Panel with Mezzanine option provides addition flexibility to the ARCX 4000 Series design. The front panel boards (ACEX-FP-IO-0x) support the use of custom mezzanine modules through the use of ultra-high-density SEARAY connectors. These custom modules interface between the system and XMC/PMC rear I/O 38999 type connectors.


Mezzanine Board Interface

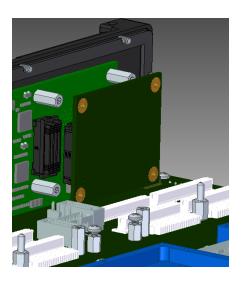

The ACEX-FP-IO-0x boards require the use of a mezzanine board on J7/J8 and J9/J10 in order to provide connections for the signals being routed to the corresponding 38999 connectors J3 and J5, respectively. On standard models, a "pass-through" mezzanine board is included for each of the mezzanine board sites on the ACEX-FP-IO-0x boards. The "pass-through" mezzanine board simply routes the PMC/XMC Rear I/O signals straight through to the 38999 connector. The "pass-through" mezzanine board is designed to be interchangeable between the two mezzanine board sites.

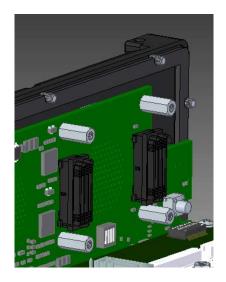
In addition to the core set of PMC/XMC Rear I/O signals that are identical between the two sites, there are a set of signals unique to each of the mezzanine board sites. On the J7/J8 mezzanine board (Site 1) there are a variety of miscellaneous signals are available for use on custom mezzanine boards. These include PCIe lanes, a SATA interface, GPIO signals, and I2C Bus lines. On the J9/J10 mezzanine board (Site 2) the additional pins are used to bring up the rest of the PMC/XMC Rear I/O signals for use on custom mezzanine boards.

See the ACEX-FP-IO-0X Front Panel Manual for more information about custom mezzanine boards. <u>www.Acromag.com</u>


Model ACEX-FP-IO-0x Front Panel with Mezzanine Block Diagram

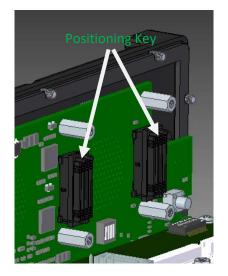
Replacing mezzanine boards


See the disassembly instructions in section 6.1(ARCX-4110) or 6.2 (ARCX-4120) then proceed to step one.

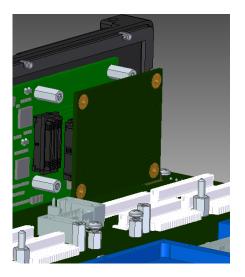

Removing Mezzanine Board:

1. Remove the 4 screws (M2.5 x 6) that secure the Mezzanine board to the front panel board.

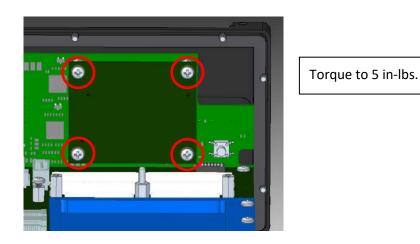
2. Carefully unplug and remove the mezzanine board.



Mezzanine removal is complete.


ARCX 4000 SERIES

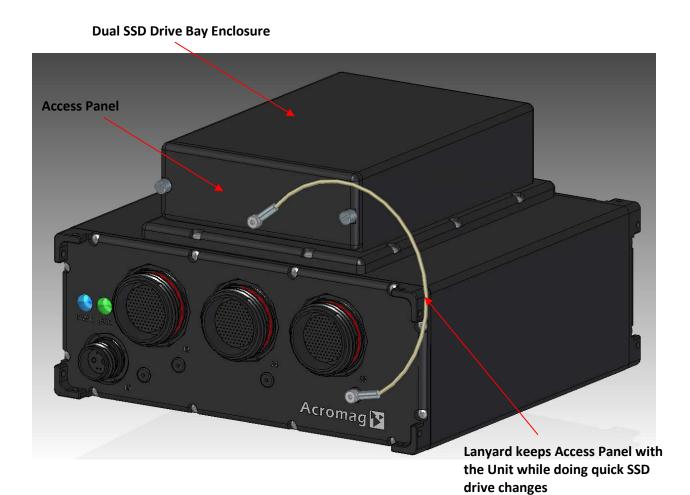
Installing Mezzanine Board:


1. Carefully plug in the mezzanine board.

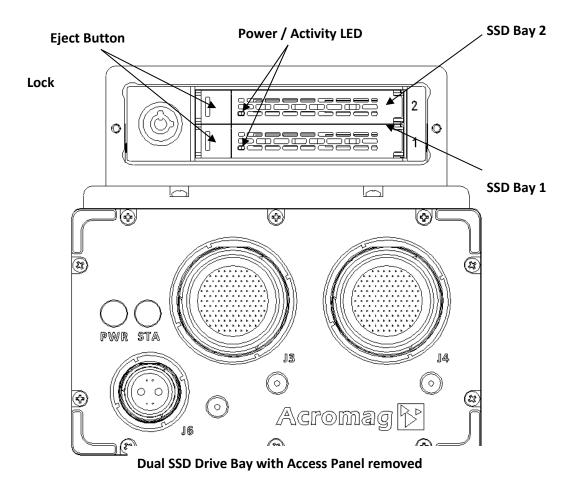
The connectors are keyed to only allow correct positioning

2. Install the 4 screws (M2.5 x 6) that secure the Mezzanine board to the front panel board.


Mezzanine installation is complete.

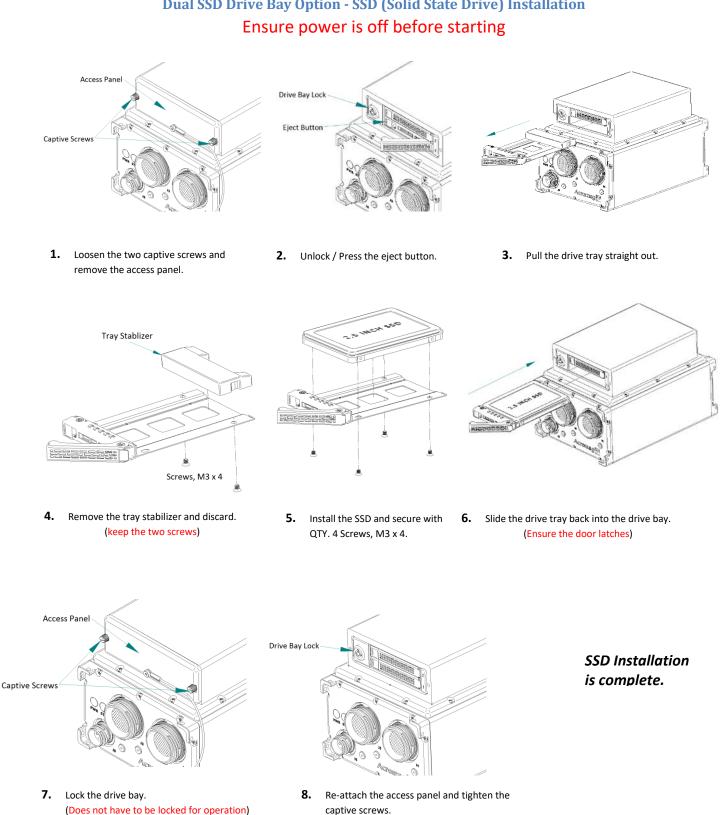

Proceed to section 6.8 (ARCX-4110) or 6.9 (ARCX-4120) to reassemble ARCX box.

Dual SSD Drive Bay Option


The Dual SSD Drive Bay option provides the ability to use 2 SATA SSD hard disk drives in your ARCX 4000 series unit while maintaining IP67 standard.

The drive bays are housed in a fully sealed enclosure. These Drive Bays can be configured with 2 SATA SSD hard disk drives and setup to use RAID 1 for backups or RAID 0 for powerful personal computing. The DUAL SSD Drive Bays are design for quick and easy removal as well as a LOCK to add extra protection and prevent unwanted SSD removal. Additional Drive Trays (P/N 5028-571 – Dual SSD Drive Tray) are also available for quick drive changes.

ARCX-4121-XX


SSD Drive Bays - SATA 2.5 inch drives.

LED (Power / Activity)

- The LED is Green when power is on.
- The LED will flash yellow showing activity.

Lock - When locked drives cannot be removed. (Does not have to be locked to operate)

Note: The SSD Drive power is on when the 10V to 36VDC voltage is on. Turn off all power before adding or removing SSD Drives to prevent Data loss or corruption.

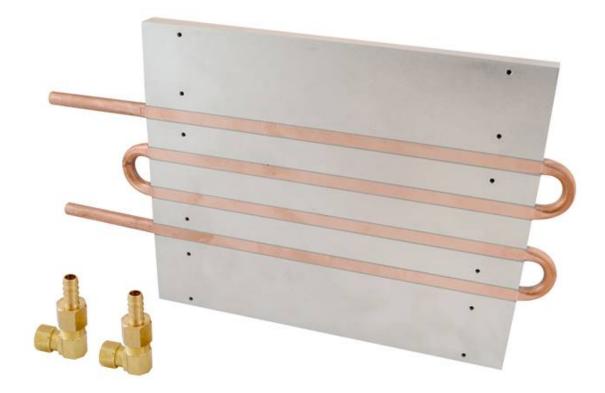
ATMD-02 Air Cooled Heatsink

The ATMD-02 Heatsink is an optional external device that can be purchased. This will allow for product development in the laboratory for the case when no airflow is not enough to cool the system.

The ATMD-02 Air cooled heatsink assembly comes with the following hardware:

- Heatsink assembly.
- Special 38999 #12 power cable with power cable for the fan (No need to order 5028-557 power cable).
- Quantity 4, M3 x 12MM screws to mount the ARCX 4000 to the heatsink.

The ATMD-02 is designed to accommodate both the single wide or double wide ARCX computer.


The ARCX box must be revision D or greater. Consult the factory if you have an older version, your system might be upgradable.

Weighs 5.6 lbs.

Approximate dimensions H: 2" x W: 8.2" x D: 9"

ATMD-03 Cold Plate

The ATMD-03 Cold Plate is an optional external device that can be purchased. This will allow for product development in the laboratory for the case when air cooling is not enough.

The ATMD-03 Cold Plate assembly comes with the following hardware:

- Cold Plate 8" x 10"
- A pair of 90 degree compression fittings
- A pair of barbed hose fittings for 3/8" hose to allow for a quick installation.
- Quantity 4, M3 x 12MM screws to mount the ARCX 4000 to the cold plate

The ATMD-03 is designed to accommodate both the single wide or double wide ARCX computer.

The ARCX computer can be mounted with either the front I/O facing the pipe fittings or away from them.

Weights 5.5 lbs.

Certificate of Volatility

Acromag Model	Man	ufacturer:							
ARCX-4xxx-xx		Acromag, Inc.							
		30765 Wixom Rd							
	Wixe	Wixom, MI 48393							
		· · ·	Volatile Men	nory					
Does this product con ■ Yes □ No	tain Volati	le memory (i	.e. Memory of whose	e contents a	re lost when p	ром	ver is removed)		
Type (SRAM, SDRAM, etc.)		ze:	User Modifiable Function:		Proc		ocess to Sanitize:		
SDRAM (located on the X 6400-xxxx)	(de SO	o to 16GB epends on the DIM modules talled)	■Yes □ No	Storage of code/data Power Down for CPU					
Type (SRAM_SDRAM	ype (SRAM, SDRAM, etc.) Size:		User Modifiable	Function	Function:		Process to Sanitize:		
PCH internal CMOS SRAM		6 bytes	■ Yes	Data storage for		Momentarily close switches			
(located on the XCOM-640		0 0 9 1 2 3		system/BIOS		SW1-3 and SW1-4			
xxxx)				Systemy	105	5.			
			Non-Volatile M	emory					
Does this product con ■ Yes □ No	tain Non-V	olatile memo	ory (i.e. Memory of w	/hose conte	nts is retained	d w	hen power is removed)		
Type (EEPROM, Flash, etc.)		ze:	User Modifiable	Function:		Process to Sanitize:			
Flash (located on the XCC	м- 16	Mbyte	■ Yes	Storage of code and		Clear Flash memory by erasing			
6400-xxxx)			🗆 No	data for s	data for system/bios		all sectors of the Flash		
Type (EEPROM, Flash,	, etc.) Siz	ze:	User Modifiable	Function:		Process to Sanitize:			
EEPROM (located on the	16	Kbyte	■ Yes	Storage of Module		Clear EEPROM by erasing all			
XCOM-6400-xxxx)			🗆 No	ID and/or	ID and/or User data		bytes		
Type (EEPROM, Flash, etc.)		ze:	User Modifiable	Function:		Process to Sanitize:			
EEPROM (located on the	ACEX- 32	Kb (4096 x 8)	■ Yes	Storage of MAC ID		Clear EEPROM memory by			
4610/4620)			🗆 No	and register setting		erasing all bytes			
			for op		for operation of				
				Ethernet controller					
Type (EEPROM, Flash, etc.)		ze:	User Modifiable	Function	Function:		Process to Sanitize:		
EEPROM (located on the ACEX-		b	■ Yes	Storage of User data		Clear EEPROM memory by			
4610/4620)			🗆 No				asing all bytes		
			Acromag Represe	entative					
Name: Tit	tle:	Email:	Email: solutions@acromag.com		Office Phone: 248-295-0310		Office Fax:		
	les and	solutions					248-624-9234		
	-								

Revision History

The following table shows the revision history for this document:

Release Date	Version	EGR/DOC	Description of Revision		
03/19/2015	А	PDG/ARP	Initial Acromag release.		
04/08/2015	В	PDG/ARP	Added Front Panel with Mezzanine Option.		
06/30/2015	С	PDG/ARP	Added Dual SSD Drive Bay Option.		
10/8/2015	D	DAG/ARP	Added ATMD-02 option.		
04/19/2016	E	DAG/ARP	Cleaned up the confusion about IP67 in section 1.4.1		
12 OCT 2018	F	MRT/MJO	Updated dimensioned drawings (pg 57-60) to include connector position.		
14 MAR 2019	G	AS/MJO	Corrected Aero Electric and Amphenol Part Numbers or page 11.		